
AdaptGear: Accelerating GNN Training via Adaptive
Subgraph-Level Kernels on GPUs

Yangjie Zhou
Shanghai Jiao Tong University

Shanghai, China
yj_zhou@sjtu.edu.cn

Yaoxu Song
Shanghai Jiao Tong University

Shanghai, China
Richard_K@sjtu.edu.cn

Jingwen Leng∗
Shanghai Jiao Tong University
Shanghai Qi Zhi Institusion

Shanghai, China
leng-jw@cs.sjtu.edu.cn

Zihan Liu
Shanghai Jiao Tong University

Shanghai, China
altair.liu@sjtu.edu.cn

Weihao Cui
Shanghai Jiao Tong University

Shanghai, China
weihao@sjtu.edu.cn

Zhendong Zhang
Shanghai Qi Zhi Institute

Shanghai, China
zhangzd@sqz.ac.cn

Cong Guo
Shanghai Jiao Tong University
Shanghai Qi Zhi Institusion

Shanghai, China
guocong@sjtu.edu.cn

Quan Chen
Shanghai Jiao Tong University

Shanghai, China
chen-quan@cs.sjtu.edu.cn

Li Li
Shanghai Jiao Tong University

Shanghai, China
lilijp@sjtu.edu.cn

Minyi Guo∗
Shanghai Jiao Tong University

Shanghai, China
guo-my@cs.sjtu.edu.cn

ABSTRACT
Graph neural networks (GNNs) are powerful tools for exploring
and learning from graph structures and features. As such, achieving
high-performance execution for GNNs becomes crucially impor-
tant. Prior works have proposed to explore the sparsity (i.e., low
density) in the input graph to accelerate GNNs, which uses the
full-graph-level or block-level sparsity format. We show that they
fail to balance the sparsity benefit and kernel execution efficiency.
In this paper, we propose a novel system, referred to as𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 ,
that addresses the challenge of optimizing GNNs performance by
leveraging kernels tailored to the density characteristics at the
subgraph level. Meanwhile, we also propose a method that dynam-
ically chooses the optimal set of kernels for a given input graph.
Our evaluation shows that 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 can achieve a significant
performance improvement, up to 6.49× (1.87× on average), over
the state-of-the-art works on two mainstream NVIDIA GPUs across
various datasets.

∗Jingwen Leng and Minyi Guo are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0140-5/23/05. . . $15.00
https://doi.org/10.1145/3587135.3592199

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms.

KEYWORDS
Graph Neural Networks, AI Frameworks, Graphics Processing Unit
ACM Reference Format:
Yangjie Zhou, Yaoxu Song, Jingwen Leng, Zihan Liu, Weihao Cui, Zhendong
Zhang, Cong Guo, Quan Chen, Li Li, and Minyi Guo. 2023. AdaptGear:
Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs.
In 20th ACM International Conference on Computing Frontiers (CF ’23), May
9–11, 2023, Bologna, Italy. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3587135.3592199

1 INTRODUCTION
Optimizing graph neural networks (GNNs) performance is a vital
task of great interest to both academia and industry. As GNNs
have demonstrated success in extending deep learning to graph
structures and features, research in this area has advanced rapidly
in recent years. Various variants of GNNmodels have been designed
and explored, leading to significant breakthroughs in fields such
as chemistry [21], neurology [6], anomaly detection [15, 47], and
social networks or recommendations [17, 52]. As graph-structured
data continues to grow, it is becoming increasingly imperative
to optimize GNN performance to enable real-time analysis and
decision-making [69, 70].

One of the important factors in optimizing the performance of
GNNs is to understand and utilize the density/sparsity nature of
their input graphs [1, 23]. Real-world graphs commonly exhibit
community-based structures [19, 44, 54], which can be identified

52

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587135.3592199&domain=pdf&date_stamp=2023-08-04

CF ’23, May 9–11, 2023, Bologna, Italy Yangjie Zhou, Yaoxu Song, Jingwen Leng, Zihan Liu, Weihao Cui, Zhendong Zhang, Cong Guo, Quan Chen, Li Li, and Minyi Guo

using existing community-based ordering tools by grouping sim-
ilar vertices together in ordinal order [3, 4, 7, 35]. This can result
in variability in density distribution within the adjacency matrix
of a single graph, with higher density on the diagonal reflecting
the edge connectivity within a community, and lower density in
other locations reflecting the edge connections between communi-
ties. Additionally, different input graph datasets can have distinct
density characteristics, with the difference in density between dif-
ferent graphs potentially reaching several orders of magnitude [30].
Hence, it is imperative to consider these density characteristics
while optimizing the performance of GNNs to ensure efficiency in
training and deployment.

Previous studies on exploiting the graph sparsity (i.e., low den-
sity) on the modern parallel GPU platform can be divided into two
categories based on the granularity of kernel mapping. The first
category, referred to as full-graph-level kernel mapping, employs a
single optimized kernel for the entire graph [32, 50, 66]. The second
category is referred to as block-level kernel mapping. The input
graph’s adjacency matrix is divided into blocks during preprocess-
ing. The optimal execution mode for each block is determined based
on its density. After computation for each block is finished, the re-
sults are combined for blocks that correspond to the same set of
vertices [63]. However, these approaches are insufficient to fully
utilize the graph sparsity for accelerating GNNs. Specifically, the
full-graph-level kernel mapping disregards the intra-graph density
distribution. The block-level kernel mapping incurs additional over-
head in runtime due to the kernel launch and result combination
processes.

In this paper, we introduce 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 , a novel system that ad-
dresses the challenge of optimizing the performance of GNNs by
leveraging the unique characteristics of graph density distribution
with minimal runtime overhead. The system starts by decomposing
the input graph into subgraphs corresponding to intra-community
and inter-community based on graph community features in a
preprocessing stage. We then employ two key components for
computational optimization. The first component, subgraph-level
customized kernels, offers diverse kernel formats tailored to the
specific characteristics with varying densities of individual sub-
graphs, resulting in more efficient utilization of computational
resources and a more efficient training process. The second com-
ponent, the adaptive selector, selects the appropriate kernel based
on a feedback-driven approach during runtime. This ensures that
the optimal kernel is used for each specific input graph, further
improving computational performance and avoiding runtime over-
head. Based on the innovative design, 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 offers a novel
and effective approach to optimize the performance of GNNs by
utilizing the unique characteristics of graph density distribution.

Overall, our work makes the following contributions:
• We conduct a detailed analysis of the density distribution of both

intra- and inter-graphs in order to understand their impact on
the sparsity-based GNN execution approaches.

• We propose a set of subgraph-level customized kernels, which
are tailored to the density characteristics of specific subgraphs
to improve GNNs’ computational efficiency.

• We introduce an adaptive selector that can determine the best-
performing kernel based on a feedback-driven approach. This

GNN Layer 0 More Layers Out

Graph
Topo.

Vertex
Features

Aggregate Operator Update Operator
GeMM
Conv
ReLU

...

Figure 1: GNN general computation flow.

ensures that the optimal kernel is used for each specific graph,
further improving performance and reducing runtime overhead.

• We propose𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 to integrate the above optimizations and
evaluate it against state-of-the-art techniques to demonstrate
its effectiveness in optimizing GNN performance. Our results
show that 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 significantly improves performance, with
an average improvement of 1.87× compared to existing methods.

2 BACKGROUND AND MOTIVATION
This section provides a brief background of graph neural networks
(GNNs) and their distinction from traditional deep neural networks
(DNNs). We show that GNNs incorporate graph-related inputs so
that their execution efficiency varies depending on the storage
format of the input graph. We then examine the density distribu-
tion of both intra- and inter-graphs, which highlights the need for
subgraph-level adaptive kernels in optimizing GNN performance.

2.1 Graph Neural Networks
Graph neural networks (GNNs) have recently gained significant
attention in both academia and industry for their ability to effec-
tively learn and infer on graph-structured data in non-Euclidean
spaces [10, 70]. As such, achieving high-performance execution
of GNNs has become an important research topic [1, 5, 70]. The
input of a GNN model is a 𝑑-dimensional vector representation
for each vertex in the input graph, known as an embedding. These
embeddings are designed to have similar values for vertices with
similar properties, such as similar subgraph structures, to facili-
tate efficient reasoning about graph-related problems [29, 41]. To
generate these embeddings, GNNs combine feature transformation
methods from DNNs with graph-based operations in graph pro-
cessing that propagate and aggregate information throughout the
graph structure.
GNN Computation. The computation flow of GNNs is illustrated
in Fig. 1. The input of a GNN model comprises both the topological
structure of the input graph and the dense feature embeddings as-
sociated with each vertex. The computation within each GNN layer
is composed of two primary types of operations, as represented by
the following equations:

𝑎
(𝑘)
𝑣 = Aggregate(𝑘)

({
ℎ
(𝑘−1)
𝑢 | 𝑢 ∈ N (𝑣)

})
ℎ
(𝑘)
𝑣 = Update(𝑘)

(
ℎ
(𝑘−1)
𝑣 , 𝑎

(𝑘)
𝑣

)
where ℎ𝑘𝑣 represents the feature vector of vertex 𝑣 at the 𝑘-th
layer. The Aggregate function performs the aggregation of mul-
tiple feature vectors from adjacent vertices into a single feature

53

AdaptGear: Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs CF ’23, May 9–11, 2023, Bologna, Italy

1 0

0 1

0 0

1 0

1 0

0 1

1 0

0 1

A B

C D

0 0 1 1 2 3 3

0 2 1 3 2 0 3

row

col

0 2 4 5 7ind_ptr

Graph Topo.

Dense Format

CSR Format

COO Format

0 2 1 3 2 0 3indices

Sparse Format

DIA, ELL, CSC, ... (not common in GNN)

(a)

Dense
CSR
COO

Ti
m
e(
m
s)

10−3

10−2

10−1

1

101

Density(%)
10−31

(b)

Figure 2: (a) Graph format example: Dense/CSR/COO. (b) Performance
comparison of different format for the aggregate-sum operator in GCN
first layer with Pubmed dataset on A100 GPU.

vector using various specific operators, such as max, mean, and sum,
which are referred to as aggregate-max, aggregate-mean, and
aggregate-sum, respectively. The Update function utilizes neu-
ral network operations, such as a multilayer perceptron (MLP), to
transform each vertex’s feature vector into a new feature vector.
Graph Format and Execution Scheduling. As a distinct feature
that sets GNNs apart from traditional DNNs, GNNs’ input data
include graph topology information. This topological data can be
represented in various formats, such as the dense format, which
utilizes a 2-dimensional array to represent the adjacency matrix
of the graph, with a value of 1 indicating a connection between
the corresponding source and destination vertices and 0 indicating
otherwise. The dense format is convenient for continuous memory
accesses but space-inefficient due to the presence of the large num-
ber of 0s in the graph. To reduce the storage overhead, GNN systems
commonly employ sparse graph formats, such as compressed sparse
row (CSR) and coordinate format (COO). The CSR format contains
two arrays: the row pointer array and the index columns array. The
row pointer array stores the indices of the start of each row in the
columns array, while the columns array stores the column indices of
the non-zero elements in the matrix. These two arrays can be used
together to reconstruct the graph topology. The COO format stores
an array of tuple for non-zero elements. Each tuple represents an
edge of the graph, with the row and column indices representing
the destination and source vertices of the edge, respectively. Fig. 2a
shows examples of these different dense and sparse formats.

The choice of graph storage format not only affects the physical
organization of the data, but also significantly impacts the sched-
uling approach that parallelizes the GNNs’ execution on GPUs.
Specifically, the dense format treats a graph-related operator as
a dense operator, while the CSR and COO formats correspond to
vertex-parallel [32] and edge-parallel [72] approaches, respectively.
Vertex-parallelism is achieved by assigning each thread to a specific
vertex and processing all of its associated edges sequentially. In
comparison, edge-parallelism is achieved by assigning each thread
to a specific edge and processing these computations in parallel.

We show that the optimal graph format choice depends on the
specific characteristics of the input graph and requires careful con-
sideration. In order to experimentally analyze how this choice
is made, we generate input graphs with various densities using

Reorder

(a)

PCGCN-Time
GNNA-Time

PCGCN-Cache
GNNA-Cache

0

20

40

60

80

100

H
it R

ate (%
)Ti

m
e

(m
s)

0

0.2

0.4

0.6

0.8

1.0

CI PU

(b)

Figure 3: (a) The impact of commmunity-based reordering on the adjacency
matrix of Citeseer dataset. (b) Comparison of performance and L2 cache
hit rate for the aggregate-sum operator in GCN first layer with Citeseer
and Pubmed datasets on A100 GPU.

RMAT [9] tool. We adjust the number of edges with a fixed vertex
size of 19717, which is the size of Pubmed dataset [5]. Using an A100
GPU [56], we compare performance results for these graphs with
different sparsity using CSR, COO, and dense data formats, per-
forming aggregate-sum operations. The results shown in Fig. 2b
indicate that the dense format has optimal execution efficiency at
high density, CSR performs optimally as density decreases, and
COO becomes the optimal solution at low density.

2.2 Intra-Graph Density Analysis
Real-world graphs commonly exhibit community-based structures [19,
44, 54], which can be identified using existing community-based or-
dering tools [3, 35] by grouping similar vertices together in ordinal
order. Each graph community has a group of vertices with strong
intra-community connections, but weak connections to other ver-
tices. However, the ordinal numbers of an original graph are often
randomly assigned. Community-based reordering aims to reorder
the vertices of a graph such that neighboring vertices belong to
the same community. This reordering also leads to a differentiated
density distribution for different subgraphs within a graph. This
phenomenon is illustrated shown in Fig. 3a, through an examina-
tion of the Citeseer dataset [20] using METIS [35], a commonly
utilized community-based reordering tool. The distribution of the
adjacency matrix before reordering is observed to be random and
irregular [4]. However, after reordering, the distribution of the
adjacency matrices corresponding to intra- and inter-community
edges exhibits distinct characteristics. These edges correspond to
the intra- and inter-community subgraphs, respectively. These two
subgraphs display a significant difference in density, with the den-
sity of intra-communities edges (i.e., on the diagonal) higher than
the density of inter-communities edges.

Previous research has explored using the graph topology ob-
tained after reordering for high-performance GNN computation.
This research can be classified into two categories based on the
granularity of kernel mapping. The first category, referred to as
full-graph-level kernel mapping, implements a static optimization
kernel for the entire graph [50, 66]. The second category, referred
to as block-level kernel mapping, invokes the computational kernel
independently for each block of the adjacency matrix [63]. The
full-graph-level mapping ignores the density distribution pattern

54

CF ’23, May 9–11, 2023, Bologna, Italy Yangjie Zhou, Yaoxu Song, Jingwen Leng, Zihan Liu, Weihao Cui, Zhendong Zhang, Cong Guo, Quan Chen, Li Li, and Minyi Guo
D

en
si

ty
 (%

)

Full graph
Intra-comm. subgraph
Inter-comm. subgraph

10−4
10−2

0

20

CO CI PU PR AR PP SB CA DD AM
06

AM
05

TW YE SW OV

Figure 4: The average density of full, intra-community and inter-
community subgraphs for different datasets.

brought by the community-based reordering of the adjacency ma-
trix and treats it as a form of the orthogonal preprocessing optimiza-
tion method. In contrast, the block-level kernel mapping selects
the appropriate execution mode for each block based on its density
at a fine-grained level, and it then merges the results of the blocks
corresponding to the same set of vertices.

As typical examples of these two categories, we use GNNAdvi-
sor [66] and PCGCN [63] for performance analysis. We collected
the execution time of the first layer of GCN and the L2 cache hit rate
via nsight system profiler [57] on A100 GPU. The results in Fig. 3b
reveal that while PCGCN achieves a higher cache hit rate, it incurs
a longer execution time. This is due to the fact that PCGCN em-
ploys an overly fine-grained granularity of kernel mapping, which
incurs additional runtime overhead of kernel launching and results
merging. Therefore, it is essential to identify an appropriate map-
ping granularity and leverage the distribution characteristics of the
reordered adjacency matrix to enhance performance.

2.3 Inter-Graph Density Analysis
In real-world graphs, density distribution variations manifest both
at the intra-graph and inter-graph levels. In other words, different
graphs have significant differences in density properties.

To investigate these variations, we analyze 15 commonly used
graph datasets as shown in Tbl. 1. The number of vertices and edges
in each dataset is recorded to provide insight into the scale of the

Table 1: Details of graph datasets used for evaluation.

dataset #Vertex #Edge #Feat #Class
cora (CO) 2708 10556 1433 7
citeseer (CI) 3327 9228 3703 6
pubmed (PU) 19717 99203 500 3
PROTEINS_full (PR) 43466 162088 29 2
artist (AR) 50515 1638396 100 12
ppi (PP) 56944 818716 50 121
soc-BlogCatalog (SB) 88784 2093195 128 39
com-amazon (CO) 334863 1851744 96 22
DD 334925 1686092 89 2
amazon0601 (AM06) 403394 3387388 96 22
amazon0505 (AM05) 410236 4878874 96 22
TWITTER-Real-Graph-Partial (TW) 580768 1435116 1323 2
Yeast (YE) 1710902 3636546 74 2
SW-620H (SW) 1888584 3944206 66 2
OVCAR-8H (OV) 1889542 3946402 66 2

Code candidates

Graph
Reordering

PyTorch
FrontendInput GNN model High Level GNN

representation

Density specialized
 subgraph-level kernels

Input dataset Decomposed graph
(community-based)

Adaptive selector
(format, code)

Tr
ai

na
bl

e
m

od
el

in
st

an
ce

Density High Mid Low

Impl Dense CSR COO

High Density:

Dense/CSR

Low Density:

CSR/COO

H
ar

dw
ar

e

AdaptGear Core

Graph features and
characteristics

R
un

tim
e

pe
rf

or
m

an
ce

m
on

ito
r

Offline Path Online Path

Figure 5: The design of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 .

graph. Additionally, the features and class sizes of the datasets vary,
which could impact the computational complexity and memory
usage of certain graph operations.

We quantify and analyze the variability of density distribution
for different datasets after community-based reordering using the
METIS algorithm. The size of each community is set to 16. As
depicted in Fig. 4, the results confirm our previous analysis on
intra-graph in Sec. 2.2 that there are distinctions in the density
distributions of intra-community subgraphs and inter-community
subgraphs. Furthermore, the results demonstrate that these distinc-
tions in characteristics also exist between different datasets. As
such, it can be inferred that using a fixed format for all datasets
does not result in optimal performance improvement.

3 DESIGN OF 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟
In this section, we present our training system, 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 , which
efficiently exploits both the intra- and inter-graph sparsity to ac-
celerate GNN training. We first present an overview of our system
and then present details for its two key components, which are the
subgraph-level customized kernels and adaptive selector.

3.1 Overview
Fig. 5 illustrates the overview of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 , a GNN acceleration
system that utilizes subgraph-level adaptive kernels. The input GNN
model is represented using a PyTorch front-end, while the input
graph dataset is decomposed under community-based reordering
guidelines. The core design of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 includes two modules:
customized CUDA kernel templates and an adaptive code selector.

The first core component of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 is the customization of
CUDA kernels, which are designed to handle intra- and inter-graphs
with varying density. Instead of using static kernels, 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟
designs customized kernels for both intra-community and inter-
community subgraphs with varying densities. This approach estab-
lishes a comprehensive strategy space, offering the potential for
high-performance optimizations of GNNs.

The second core component of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 is the adaptive code
selector, which selects the optimal CUDA kernel template during
runtime. By monitoring and profiling the performance of each

55

AdaptGear: Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs CF ’23, May 9–11, 2023, Bologna, Italy

Table 2: Comparison of existing graph operator acceleration meth-
ods with our proposed 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 .
Kernel Mapping
Granularity

Format
Strategy Existing Works Runtime

Overhead
Full-Graph-Level Static GNNAdvisor [66], NeuGraph [50] Low

Block-Level Adaptive PCGCN [63] High
Subgraph-Level Adaptive Ours Low

subgraph kernel during the initial few iterations, the adaptive code
selector selects the optimal CUDA kernel template that is best suited
to the corresponding inputs.

Table 2 compares our system against existing GNN acceleration
works. Previous works either employ full-graph-level execution
granularity, not fully exploiting the performance optimization op-
portunities provided by the distribution of intra-graph densities,
or utilize block-level execution strategies that incur substantial
runtime overhead. In contrast, 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 utilizes subgraph-level
granularitywith adaptive kernel mapping, effectively leveraging the
performance optimization opportunities presented by both intra-
and inter-graph density distributions while minimizing runtime
overhead as much as possible.

3.2 Subgraph-level Customized Kernel
In this subsection, we describe the design of subgraph-level ker-
nels in 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 . The optimization of graph-related operations
on GPUs requires two key considerations. Firstly, it is essential
to implement an appropriate mapping from computation to the
CUDA software abstractions such as CTA (Cooperative Thread
Array), thread, etc., to fully leverage the computing resources of
the GPU [12]. Secondly, the GPU’s memory hierarchy, including
global memory, shared memory, and registers, exhibits different
access overhead from large to small [53]. To achieve lower access
overhead and better performance, efficient memory management is
crucial. As an architecture designed to process regular, continuous
data, GPU is inefficient when processing irregular sparse data such
as graphs [1, 5]. So, customized optimizations are required due to
the irregular and sparse nature of GNNs.

As previouslymentioned in Sec. 2, there is a diversity in preferred
input formats for graphs with different density levels. Furthermore,
intra- and inter-community subgraphs exhibit different density
distribution properties. To harness these distinct features, we design
a series of density-specific subgraph-level kernels.
CSR-based kernel. As shown in the left side of Fig. 6, we present
the CSR-based kernel for inter-community subgraphs, which are
characterized by low and irregular density distributions. Since the
CSR format stores the adjacency matrix in a row-major way, our
approach maps a CTA to multiple destination vertices, with each
thread accessing the corresponding source neighbor’s vertex fea-
tures serially. To exploit the reuse of topological data within the
CTA, we cache the data in shared memory. On the other hand,
as the index of source neighbors cannot be determined within a
finite range that fits the size of shared memory, we load the vertex
features directly from global memory into registers.

Next, we introduce our CSR-based customized kernel for intra-
community subgraphs. These subgraphs are characterized by high

Shared
Memory Register Compute

Unit

Capacity

Off Chip (Global Mem)

On Chip

Load Iteratively

Shared
Memory Register Compute

Unit

Capacity

Graph Topo. Vertex Features

Off Chip (Global Mem)

On Chip

Exceeded Available

ds
t

src

Bind to CTA

Graph Topo.

src

ds
t

Vertex Features
... ...

Bind to CTA

Figure 6: Comparison of kernel execution with CSR format for (left)
low-density inter-community subgraph and (right) high-density
intra-community subgraph.

density, with edges concentrated in blocks around the diagonal of
the adjacency matrix. In light of this observation, we present our
customized CSR-based kernel for intra-community subgraphs as
shown in the right side of Fig. 6. We map a CTA to a community
on a corresponding adjacency matrix. In this mapping relationship
between CTA and graph topology, the range of indexes of source
vertices that a CTA needs to access is limited and can be determined
in advance. Thus, we can pre-load all the vertex features that are
required to be accessed into the shared memory. This improves the
efficiency of memory accesses, as the intra-community subgraph
has a higher density and these features are accessed repeatedly.
Furthermore, to avoid excessive shared memory allocation from
negatively affecting the parallelism of the CUDA kernel, we apply
tiling techniques [37] when the feature size is large.
COO-based kernel. The COO format is distinctive from the CSR
format in that it organizes data in an edge-wise manner. Therefore,
we design COO-based kernel templates. As demonstrated by the ex-
ample of the aggregate-sum kernel in Algo. 1, this kernel performs
computation by allocating threads and conducting element-wise
computation. The topology and vertex feature data accessed in the
COO kernel are independent between threads, and thus the shared
memory caching mechanism is not employed. This approach offers
a high degree of parallelism, but destination vertices’ updates must
be atomic, making it more appropriate for input graph datasets

Algorithm 1: The coo-based aggregate-sum kernel.
input :Graph 𝐺 = (𝑅𝑜𝑤 [𝐸],𝐶𝑜𝑙 [𝐸]), Vertex Feature

Tensor 𝑋 [𝑉] [𝐹]
output :Vertex Feature Tensor 𝑌 [𝑉] [𝐹]

1 for 𝑒𝑑𝑔𝑒_𝑖𝑑 = 0 to 𝐸 − 1 in parallel do
2 for 𝑑𝑖𝑚_𝑖𝑑 = 0 to 𝐹 − 1 in parallel do
3 𝑑𝑠𝑡_𝑖𝑑 = Row [𝑒𝑑𝑔𝑒_𝑖𝑑];
4 𝑠𝑟𝑐_𝑖𝑑 = Col [𝑒𝑑𝑔𝑒_𝑖𝑑];
5 Atomic_Add(Y [𝑑𝑠𝑡_𝑖𝑑] [𝑑𝑖𝑚_𝑖𝑑], X

[𝑠𝑟𝑐_𝑖𝑑] [𝑑𝑖𝑚_𝑖𝑑]);
6 end
7 end

56

CF ’23, May 9–11, 2023, Bologna, Italy Yangjie Zhou, Yaoxu Song, Jingwen Leng, Zihan Liu, Weihao Cui, Zhendong Zhang, Cong Guo, Quan Chen, Li Li, and Minyi Guo

with extremely low density. Consequently, the COO-based kernel
is only utilized as a code candidate for inter-community subgraphs.
Dense-based kernel. We also propose a dense format-based ap-
proach for the intra-community subgraph. Specifically, we map a
CTA to a community’s adjacency matrix block and then use sequen-
tial access and computation to perform sparse graph operations.
For example, by storing the adjacency matrix in dense format and
then directly performing in batched GEMM kernel [58] on it with
the vertex feature, the result is equivalent to the aggregation-sum
graph operator. Traditional graph computation methods do not uti-
lize this approach due to the low density of graphs and the resulting
large number of invalid accesses and computations. However, in the
case of intra-community subgraphs with high density, this method
can provide optimal performance gains in some scenarios. The use
of Tensor Core for 32-bit computation has been supported only
since the beginning of the Ampere architecture. To ensure com-
putational equivalence, we use Tensor Core in the A100 GPU and
CUDA Core in the V100 GPU as compute units for the dense format
kernel in our subsequent implementations. The mixed precision
computational approach enables the utilization of Tensor Core on
pre-Ampere architectures, and we leave this as future work.

3.3 Adaptive Selector
After customizing the kernels for high-performance computational
optimization of input subgraphs with varying densities on the back-
end, the preprocessing stage involves utilizing a community-based
reordering tool to decompose the input graph into inter-community
and intra-community subgraphs. Specifically, we iterate through
each edge of the graph after reordering and calculate the block
index of the adjacency matrix where the edge is located using the
indexes of the source and destination vertices of the edge during
the preprocessing stage. When the block index corresponding to
the source vertex is equal to the block index corresponding to the
destination vertex, it means that the edge is on the diagonal of the
adjacency matrix, i.e., it belongs to the intra- community subgraph.
Otherwise, this edge is added to the inter-community subgraph.

The final pivotal aspect in attaining efficient training is the core
component: the adaptive selector. This selector employs a feedback-
driven approach to determine the most suitable kernels for dif-
ferent input graphs. Due to the limited number of subgraph-level
customized kernels provided by 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 , specifically two for
intra-subgraph and two for inter-subgraph, and the fact that GNN
training requires hundreds or even thousands of iterations with
a static topology graph [70], we adopt a feedback-based selection
strategy. In the first few iterations of GPU training, we use amonitor
to collect the running time of each subgraph kernel, which is then
fed back to the runtime scheduler as the basis for kernel selection
in the following iteration. Although this feedback collection pro-
cess may cause some time loss due to monitoring, the performance
losses incurred in the early iterations are considered insignificant in
the overall context of the training process as evaluated in Sec. 6.3.

4 IMPLEMENTATION
In this section, we elaborate on the implementation details of
𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 . We start with the front-end programming interface
and describe how the back-end integrates with our system.

1import AdaptGear as AG
2import torch
3
4# Create a GCN class.
5class GCN(torch.nn.Module):
6 def __init__(self,...):
7 self.gcn = AG.GCNConv(in_feats, h_feats)
8 ...
9 def forward(self, x, inter_subg, intra_subg):

10 x = self.gcn(x, inter_subg, intra_subg)
11 ...
12
13# Define a GCN model.
14model = GCN(...)
15
16# Loading graph dataset.
17graph = AG.load_graph(graph_file)
18
19# Reorder and decompose graph.
20inter_subg, intra_subg = AG.graph_decompose(graph, method='METIS',

comm_size=16)
21
22# Run model.
23predict_y = model(x, inter_subg, intra_subg)
24
25# Compute loss and accuracy.
26# Gradient backpropagation for training.

Figure 7: Example of GCN model using 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 ’s interfaces.

4.1 User-level Interface
𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 utilizes PyTorch as the front-end to enhance programma-
bility and user-friendliness. As an illustration, a representative GCN
model is provided as an example for using 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 in Fig. 7.

𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 offers two types of interfaces. The first is for the
computation of GNN, such as the AG.GCNConv in Line 7 of Fig. 7.
The second interface is for the preprocessing of graphs, such as
the AG.graph_decompose in Line 19. Upon examination, it is clear
that 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 does not substantially deviate from the traditional
GNN framework at the front-end level, but only adds a customized
computational interface and an additional preprocessing step for
graph decomposition. Consequently, it preserves good scalability
and lowers the users’ learning curve.

Another feature in 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 is the adaptive selector, which
operates in a transparent manner to the user during training. This
design choice eliminates the need for the user to manually choose
the optimal selection strategy, thereby improving ease of use.

4.2 System Integration
In this subsection, we detail the integration of the front-end inter-
face with the back-end implementation in 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 .

The front-end computational interface needs to be integrated
with the back-end kernel implementation. 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 offers a vari-
ety of density-customized kernels, which are built using C++/CUDA
and integrated into the PyTorch framework through pybind11 [33].
The data is loaded using a Pytorch-based data loader and passed as
a Tensor to𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 ’s back-end for computation on GPUs. Upon
completion of the computation, the result tensor is returned to the
original PyTorch framework for further uses like loss computations.

The preprocessing interface in𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 consists of two stages:
reordering and decomposition. The first stage involves the graph

57

AdaptGear: Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs CF ’23, May 9–11, 2023, Bologna, Italy

DGL
PyG
AdaptGear

N
or

m
. T

im
e

0

2

4

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo.Mean

(a) GCN on V100.

DGL
PyG
AdaptGear

N
or

m
. T

im
e

0

2

4

6

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo.Mean

(b) GIN on V100.

DGL
PyG
AdaptGear

N
or

m
. T

im
e

0

2

4

6

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo.Mean

(c) GCN on A100.

DGL
PyG
AdaptGear

N
or

m
. T

im
e

0

2

4

6

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo.Mean

(d) GIN on A100.

Figure 8: End-to-end normalized training time result on two GPUs. 𝑋 -axis indicates different graph datasets.

reordering using the default algorithm, METIS [35]. This stage
allows for the specification of either the community size or the
number of communities as parameters, providing flexibility in the
reordering process. Furthermore, the specific reordering algorithm
used in the backend has potential for future expansion. In the second
stage, the graph is decomposed into intra- and inter-community
subgraphs by traversing the graph once and dividing the edges
based on their source and destination vertex indices.

5 METHODOLOGY
Experiments To evaluate 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 , we use two enterprise-
level GPUs as our hardware platforms: Tesla V100 [59] and Ampere
A100 [56]. Tbl. 3 details our experimental setup.
Baselines We choose four baseline implementations for compari-
son: 1) Deep Graph Library (DGL) [64] is the state-of-the-art GNN
framework that works for multiple DL frameworks. We choose
PyTorch version in this work. 2) Pytorch-Geometric (PyG) [18]
is another GNN framework which is built upon PyTorch. 3) GN-
NAdvisor [66] accelerates GNNs on GPUs with handwritten full-
graph-level CUDA kernel implementations. 4) PCGCN [63] utilizes
block-level adaptive kernel to leverage the intra-graph hybrid den-
sity distribution to accelerate GCN.
Benchmarks We use GCN [41] and GIN [71] as representative
GNN models in our study. We follow the default configuration for
layers, hidden features, and training parameters as outlined in their
original papers for all baselines and 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 to ensure a fair

Table 3: Detailed experimental setup.
GPU NVIDIA Tesla V100(80 SMs) Nvidia Ampere A100 (108 SMs)

CPU Intel(R) Xeon(R) Silver
4210 CPU @ 2.20GHz

Intel(R) Xeon(R) Silver
4210R CPU @ 2.40GHz

OS Ubuntu 18.04.5 (kernel 5.4.0) Ubuntu 20.04.2 (kernel 5.11.0)
Driver GPU Driver: 470.57 GPU Driver: 515.48.07
Software CUDA: 11.6; Pytorch: 1.13

comparison. We run each benchmark 200 iterations of end-to-end
training and present the average results to isolate the effects of
randomness.
Datasets We use 15 graph datasets that have also been used in
many previous GNN optimization works [38, 46, 62]. The total
count, sparsity, input feature size, and output classes vary signif-
icantly among these datasets. As such, our chosen datasets are
sufficient to represent the graph in real-world scenarios. Tbl. 1
provides detailed information for these datasets.

6 EVALUATION
In this section, we aim to evaluate the following points:
• What are the end-to-end performance improvements brought by

𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 compared to existing GNN frameworks and manual
optimization efforts?

• How much does each design module in 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 contribute
to the overall performance improvement?

• How much is the additional overhead introduced by the design
of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟?

6.1 End-to-end Performance Comparisons
State-of-the-Art GNN Frameworks. We first compare the end-
to-end training performance of𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 with twowidely adopted
GNN frameworks, including DGL [64] and PyG [18]. The results,
as shown in Fig. 8, compare their normalized end-to-end execu-
tion time on two GPUs. To ensure the fairness of comparison, we
use the same METIS community size setting of 16 for both the
baselines and 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 . Our results indicate that on both GPUs,
𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 achieves significant performance improvements over
the baselines, with geometric average speedup values of 1.83× and
2.16× over DGL and PyG, respectively. This improvement is due
to 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 ’s efficient exploitation of the density distribution
at both the intra- and inter-graph levels. For each GNN model,
𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 achieves an average improvement of 1.69× and 2.33×
on GCN and GIN, respectively. The more significant improvement

58

CF ’23, May 9–11, 2023, Bologna, Italy Yangjie Zhou, Yaoxu Song, Jingwen Leng, Zihan Liu, Weihao Cui, Zhendong Zhang, Cong Guo, Quan Chen, Li Li, and Minyi Guo

GNNA-Rabbit GNNA-Metis AdaptGearN
or

m
. T

im
e

0

0.5

1.0

1.5

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo.Mean

(a) GCN.

GNNA-Rabbit GNNA-Metis AdaptGearN
or

m
. T

im
e

0

1

2

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV Geo.Mean

(b) GIN.

Figure 9: Performance comparisons between GNNAdvisor and
𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 on A100 GPU.𝑋 -axis indicates different graph datasets.

on GIN is attributed to its higher proportion of time spent on
graph-related operations, which are the main optimization scope
of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 .
Manual Optimization. To demonstrate the performance benefits
of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 compared to existing GNN manual optimization
efforts, we choose GNNAdvisor [66] and PCGCN [63] as the full-
graph-level and block-level acceleration baselines, respectively.

GNNAdvisor [66] uses rabbit-sort [3] as its default preprocess-
ing step for reordering. To eliminate the impact of the prepro-
cessing tool, we collect performance results from two reorder-
ing preprocesses for GNNAdvisor, one using rabbit-sort (referred
to as GNNA-Rabbit) and the other using METIS (referred to as
GNNA-Metis). Due to the space limit, we only show the results
on the A100 GPU. As shown in Fig. 9, 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 achieves an av-
erage 1.40× and 1.41× performance gain over GNNA-Rabbit and
GNNA-Metis onA100GPU. This result shows that𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 yields
good performance optimization results for different preprocessing
methods. It is worth noting that the results trend for the V100 GPU
is similar. Specifically, the geometric average performance speedup
ratios of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 compared to GNNA-Rabbit and GNNA-Metis
on the V100 GPU are 1.39× and 1.38×, respectively.

PCGCN [63] optimizes GCN performance through a block-level
approach. However, the METIS parameters used are not clearly
specified in their paper. Therefore, we traverse the METIS param-
eters within the range of 2 to 1024 at multiples of 2 intervals for
PCGCN and present the optimal one as the final performance re-
sults. The results on A100, as shown in Fig. 10, indicate that despite
providing PCGCN with a wide range of reordering parameters, its
performance remains lower compared to that of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 for all
datasets. Specifically, the geometric average performance speedup
ratios of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 over PCGCN on the A100 and V100 GPUs are
2.30× and 2.59×, respectively.

Our comparisonwith these baselines highlights that the subgraph-
level kernel mapping granularity utilized by𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 is the more
effective for optimizing the computation in GNNs.

PCGCN
AdaptGear

Ti
m

e
(m

s)

1

10

100

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV

Figure 10: Performance comparisons of PCGCN and 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟
for GCN on A100 GPU. 𝑋 -axis indicates different graph datasets.

O1 O2 O3

N
or

m
. T

im
e

0

1

2

CO PU PP SB DD AM06
TW OV

Figure 11: Execution time of different 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 versions on A100.

6.2 Performance Improvement Breakdown
𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 incorporates two performance optimization modules,
including subgraph-level customized kernels and an adaptive se-
lector. To evaluate the effectiveness of these modules, we design
relevant baselines and conduct experiments to quantify their contri-
bution. We define three optimization versions of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 . The
O1 version utilizes a static CSR kernel at the full-graph level, while
the O2 version employs static CSR kernels for intra-community
subgraphs and COO kernels for inner-community subgraphs. The
O3 version incorporates subgraph-level adaptive sparse kernels.

We use the GCN model in this experiment and collect the per-
formance results on A100 GPU. Due to the space limit, we omit
the results for the other models and hardware. As illustrated in
Fig. 11, the results show that the implementation of different opti-
mization versions can lead to significant variations in performance
improvement across different datasets. This highlights the crucial
role that subgraph-level kernels and the adaptive selector play in
the optimization process of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 .

6.3 Additional Studies
Runtime Overhead. There are two sources of additional runtime
overhead in 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 . The first is graph preprocessing, which
includes graph reordering and graph decomposition, and needs to
be performed only once before the training starts. The second is the
adaptive selector, which monitors performance in the early itera-
tions of GNN training. However, the overhead from both processes
has a negligible impact compared to the overall GNN training pro-
cess. To illustrate, we evaluate the overhead using the amazon0601
dataset. The overhead of the graph decomposition is 0.08 seconds,
while the overhead of the graph reordering is 0.59 seconds. Further-
more, the runtime monitoring in our adaptive selector incurs less
than 0.1 seconds in the early training iterations. Overall, the mag-
nitude of these overheads is insignificant compared to the hours or
even days required [16, 70] for the GNN training.
Memory Overhead. The graph decomposition potentially gen-
erates additional storage overhead for the topology. However, this

59

AdaptGear: Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs CF ’23, May 9–11, 2023, Bologna, Italy

Topo. Tensor Other Tensor

M
em

or
y

R
at

io
 (%

)

0

0.5

1.0

CO CI PU PR AR PP SB CA DD AM06
AM05

TW YE SW OV

Figure 12: Memory overhead for storing subgraph topology (de-
noted as Topo. Tensor) in different datasets.

overhead is comparatively small as the majority of memory usage
during GNN training is occupied by vertex features and gradient-
related data [74]. To quantify the additional memory overhead, we
measure the maximum memory overhead via PyTorch Profiler [60]
for the GCN model on A100 GPU and compare it with the overhead
for the additional subgraph topology storage. As shown in Fig. 12,
the percentage of memory occupied by additional topological data
is only 4.47% on average, which we believe is acceptable.

7 RELATEDWORK
Graph Processing on GPUs. GPUs are crucial computing plat-
forms in various task scenarios [42, 51]. Many studies have focused
on optimizing GPUs at the architecture [27, 28, 45, 67], schedul-
ing [13, 14, 26, 49, 68, 75], and algorithm [24, 25, 77] levels. Nu-
merous graph processing systems [22, 39, 40, 43, 55, 61, 65] have
been proposed to accelerate traditional graph algorithms on GPUs.
These efforts have also explored various parallelization strategies,
including vertex parallelism and edge parallelism for graph pro-
cessing. There are also efforts to explore dynamic parallelization
strategies through domain-specific language (DSL) [8, 73].

However, GNNs differ from traditional graph algorithms in terms
of their graph operation characteristics and the dimensionality of
their feature embeddings, leading to a parallelization strategy space
that exceeds the capabilities of traditional graph processing systems.
GNN Frameworks. DGL [64] and PyG [18] are two popular GNN
frameworks, which both employ a message-passing programming
interface based on DNN frameworks. 𝐺3 [48] focuses on utilizing
graph processing frameworks for training GNNs on GPUs. De-
spite these efforts, the existing frameworks do not fully exploit
the opportunities presented by graph density characteristics for
optimizing graph kernel computations and hence cannot achieve
optimal performance on GPUs.

On the other hand, other frameworks such as Roc [34], Neu-
Graph [50], and AliGraph [78] aim to address large-scale distributed
GNNprocessing. However, their designs are orthogonal to𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 .
For handling large graphs requiring multiple GPUs to process,
various well-established graph partitioning techniques can divide
the graph into smaller subgraphs suitable for single-GPU train-
ing [2, 35, 36]. Therefore, the optimization of single-GPU training
is equally beneficial for multi-GPU scenarios.
Graph Kernel Optimization. There are also some works that try
to explore the graph kernels in GNNs to optimize GNNs. GNNAd-
visor [66] provides customized kernels with scalable parameters
for accelerating GNNs on GPUs. GE-SpMM [32] focuses on opti-
mizing SPMM-like graph kernels in GNNs, while FeatGraph [31]

extends TVM [11] to execute SPMM-like and SDDMM-like graph
kernels on GPUs. uGrapher [76] addresses the challenges posed
by the dynamics of input graphs and operators by providing a uni-
fied abstraction for all graph operations. However, the previous
optimization efforts apply to entire input graphs and overlook the
performance optimization opportunities presented by variations in
the density distribution of intra-graphs. Additionally, PCGCN [63]
adopts a block-level approach to leverage the intra-graph density
distribution. However, it leads to additional accumulation opera-
tions, resulting in high runtime overhead in some scenarios.

Unlike all existing work, 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 propose a set of subgraph-
level customized kernels and adaptively select the current most
suitable kernel for a given input, thus achieving a general GNN
high-performance computation optimization.

8 CONCLUSION
In this work, we propose 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 , a novel high-performance
GNN training system that exploits both the intra- and inter-graph
sparsities via adaptive subgraph-level kernels. Our system achieves
a significant average speedup of 1.87× compared to various state-
of-the-art works, including GNN frameworks and manual optimiza-
tions. The exceptional performance of 𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 is attributed to
two key components: subgraph-level customized kernels that offer
diverse kernel formats optimized for subgraphs of varying densi-
ties and an adaptive selector that selects the appropriate kernel for
the input subgraph. Through the detailed evaluation, we demon-
strate the effectiveness of𝐴𝑑𝑎𝑝𝑡𝐺𝑒𝑎𝑟 and its potential as a common
methodology for high-performance GNN training.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of
China under Grant 2021ZD0110104, the National Natural Science
Foundation of China (NSFC) grant (62222210, U21B2017, and 620722-
97). The authors would like to thank the anonymous reviewers for
their constructive feedback for improving the work. Any opinions,
findings, and conclusions in this paper are those of the authors only
and do not necessarily reflect the views of our sponsors.

REFERENCES
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard

Alarcón. 2021. Computing graph neural networks: A survey from algorithms to
accelerators. ACM Computing Surveys (CSUR) 54, 9 (2021), 1–38.

[2] Konstantin Andreev and Harald Räcke. 2004. Balanced graph partitioning. In
Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms
and architectures. 120–124.

[3] Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu
Iwamura. 2016. Rabbit order: Just-in-time parallel reordering for fast graph
analysis. In 2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 22–31.

[4] Vignesh Balaji and Brandon Lucia. 2018. When is Graph Reordering an Optimiza-
tion?. In IEEE International Symposium on Workload Characterization (IISWC).

[5] Trinayan Baruah, Kaustubh Shivdikar, Shi Dong, Yifan Sun, Saiful A Mojumder,
Kihoon Jung, José L Abellán, Yash Ukidave, Ajay Joshi, John Kim, et al. 2021.
Gnnmark: A benchmark suite to characterize graph neural network training on
gpus. In 2021 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 13–23.

[6] Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. 2022. Graph neural
networks in network neuroscience. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2022).

[7] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered
label propagation: A multiresolution coordinate-free ordering for compressing
social networks. In Proceedings of the 20th international conference on World Wide
Web. 587–596.

60

CF ’23, May 9–11, 2023, Bologna, Italy Yangjie Zhou, Yaoxu Song, Jingwen Leng, Zihan Liu, Weihao Cui, Zhendong Zhang, Cong Guo, Quan Chen, Li Li, and Minyi Guo

[8] Ajay Brahmakshatriya, Yunming Zhang, Changwan Hong, Shoaib Kamil, Julian
Shun, and Saman Amarasinghe. 2021. Compiling Graph Applications for GPU
s with GraphIt. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 248–261.

[9] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[10] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin P.
Murphy. 2020. Machine Learning on Graphs: A Model and Comprehensive
Taxonomy. ArXiv abs/2005.03675 (2020).

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q. Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End
Optimizing Compiler for Deep Learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association,
578–594. https://www.usenix.org/conference/osdi18/presentation/chen

[12] Shane Cook. 2012. CUDA programming: a developer’s guide to parallel computing
with GPUs. Newnes.

[13] Weihao Cui, Han Zhao, Quan Chen, Hao Wei, Zirui Li, Deze Zeng, Chao Li, and
Minyi Guo. 2022. {DVABatch}: Diversity-aware {Multi-Entry}{Multi-Exit}
Batching for Efficient Processing of {DNN} Services on {GPUs}. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22). 183–198.

[14] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen Leng, Jieru Zhao,
Zhuo Song, Tao Ma, Yong Yang, Chao Li, et al. 2021. Enable simultaneous dnn
services based on deterministic operator overlap and precise latency prediction.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–15.

[15] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020.
Enhancing graph neural network-based fraud detectors against camouflaged
fraudsters. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 315–324.

[16] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. 2020. Benchmarking graph neural networks. (2020).

[17] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In The World Wide
Web Conference. ACM, 417–426.

[18] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[19] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[20] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. 1998. CiteSeer: An automatic
citation indexing system. In Proceedings of the third ACM conference on Digital
libraries. 89–98.

[21] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[22] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In 10th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, Chandu Thekkath and Amin
Vahdat (Eds.). USENIX Association, 17–30. https://www.usenix.org/conference/
osdi12/technical-sessions/presentation/gonzalez

[23] Chuangyi Gui, Long Zheng, Bingsheng He, Cheng Liu, Xinyu Chen, Xiaofei Liao,
and Hai Jin. 2019. A Survey on Graph Processing Accelerators: Challenges and
Opportunities. Journal of Computer Science and Technology 34 (2019), 339–371.

[24] Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang,
Xiaoying Jia, Xipeng Li, Minyi Guo, and Yuhao Zhu. 2020. Accelerating sparse
dnn models without hardware-support via tile-wise sparsity. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis.

[25] Cong Guo, Yuxian Qiu, Jingwen Leng, Xiaotian Gao, Chen Zhang, Yunxin Liu,
Fan Yang, Yuhao Zhu, and Minyi Guo. 2022. SQuant: On-the-Fly Data-Free
Quantization via Diagonal Hessian Approximation. In International Conference
on Learning Representations. https://openreview.net/forum?id=JXhROKNZzOc

[26] Cong Guo, Yuxian Qiu, Jingwen Leng, Chen Zhang, Ying Cao, Quanlu Zhang,
Yunxin Liu, Fan Yang, and Minyi Guo. 2022. Nesting Forward Automatic Differ-
entiation for Memory-Efficient Deep Neural Network Training. In 2022 IEEE 40th
International Conference on Computer Design (ICCD). IEEE, 738–745.

[27] Cong Guo, Chen Zhang, Jingwen Leng, Zihan Liu, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. 2022. Ant: Exploiting adaptive numerical data type for
low-bit deep neural network quantization. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1414–1433.

[28] Cong Guo, Yangjie Zhou, Jingwen Leng, Yuhao Zhu, Zidong Du, Quan Chen,
Chao Li, Bin Yao, and Minyi Guo. 2020. Balancing efficiency and flexibility
for DNN acceleration via temporal GPU-systolic array integration. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[29] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30

(2017).
[30] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[31] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng Zhang,
Zhiru Zhang, and Yida Wang. 2020. Featgraph: A flexible and efficient backend
for graph neural network systems. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–13.

[32] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. 2020. Ge-spmm:
General-purpose sparse matrix-matrix multiplication on gpus for graph neural
networks. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–12.

[33] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. 2017. pybind11–Seamless
operability between C++ 11 and Python. URL: https://github. com/pybind/pybind11
(2017).

[34] Zhihao Jia, Sina Lin, MingyuGao,Matei Zaharia, and Alex Aiken. 2020. Improving
the accuracy, scalability, and performance of graph neural networks with roc.
Proceedings of Machine Learning and Systems 2 (2020), 187–198.

[35] George Karypis and Vipin Kumar. 1997. METIS: A software package for parti-
tioning unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. (1997).

[36] George Karypis and Vipin Kumar. 1998. Multilevel algorithms formulti-constraint
graph partitioning. In SC’98: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing. IEEE, 28–28.

[37] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. 2017. Cutlass: Fast
linear algebra in cuda c++. NVIDIA Developer Blog (2017).

[38] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion
Neumann. 2016. Benchmark Data Sets for Graph Kernels. http://graphkernels.
cs.tu-dortmund.de

[39] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams,
and Panos Kalnis. 2013. Mizan: a system for dynamic load balancing in large-scale
graph processing. In Proceedings of the 8th ACM European conference on computer
systems. 169–182.

[40] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:
vertex-centric graph processing on GPUs. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. 239–252.

[41] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[42] Zhen Kong, Cheng-Zhong Xu, and Minyi Guo. 2011. Mechanism design for
stochastic virtual resource allocation in non-cooperative cloud systems. In 2011
IEEE 4th International Conference on Cloud Computing. IEEE, 614–621.

[43] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October
8-10, 2012, Chandu Thekkath and Amin Vahdat (Eds.). USENIX Association, 31–
46. https://www.usenix.org/conference/osdi12/technical-sessions/presentation/
kyrola

[44] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. 2008. Benchmark
graphs for testing community detection algorithms. Physical review E 78, 4 (2008),
046110.

[45] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, Quan Chen,
Minyi Guo, and Vijay Janapa Reddi. 2020. Asymmetric resilience: Exploiting
task-level idempotency for transient error recovery in accelerator-based systems.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 44–57.

[46] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[47] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. 2019. Spam Review
Detection with Graph Convolutional Networks. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 2703–2711.

[48] Husong Liu, Shengliang Lu, Xinyu Chen, and Bingsheng He. 2020. G3: when
graph neural networks meet parallel graph processing systems on GPUs. Pro-
ceedings of the VLDB Endowment 13, 12 (2020), 2813–2816.

[49] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo.
2022. VELTAIR: towards high-performance multi-tenant deep learning services
via adaptive compilation and scheduling. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 388–401.

[50] Lingxiao Ma, Zhi Yang, Youshan Miao, Jilong Xue, Ming Wu, Lidong Zhou, and
Yafei Dai. 2019. NeuGraph: Parallel Deep Neural Network Computation on
Large Graphs. In 2019 USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019, Dahlia Malkhi and Dan Tsafrir (Eds.). USENIX
Association, 443–458. https://www.usenix.org/conference/atc19/presentation/
ma

[51] Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, and Minyi Guo. 2017. Transt:
Type-based multiple embedding representations for knowledge graph completion.

61

AdaptGear: Accelerating GNN Training via Adaptive Subgraph-Level Kernels on GPUs CF ’23, May 9–11, 2023, Bologna, Italy

In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I
10. Springer, 717–733.

[52] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.
2021. UltraGCN: ultra simplification of graph convolutional networks for recom-
mendation. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 1253–1262.

[53] Xinxin Mei and Xiaowen Chu. 2016. Dissecting GPU memory hierarchy through
microbenchmarking. IEEE Transactions on Parallel and Distributed Systems 28, 1
(2016), 72–86.

[54] Mark EJ Newman. 2013. Spectral methods for community detection and graph
partitioning. Physical Review E 88, 4 (2013), 042822.

[55] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Trans-
forming irregular graphs for GPU-friendly graph processing. ACM SIGPLAN
Notices 53, 2 (2018), 622–636.

[56] NVIDIA. 2021. NVIDIA A100 Tensor Core GPU Architecture.
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-
ampere-architecture-whitepaper.pdf.

[57] NVIDIA. 2021. Profiler User’s Guide. https://docs.nvidia.com/cuda/profiler-users-
guide/index.html.

[58] CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California
15, 27 (2008), 31.

[59] Tesla NVIDIA. 2017. Nvidia tesla v100 gpu architecture.
[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[61] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 472–488.

[62] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[63] Chao Tian, Lingxiao Ma, Zhi Yang, and Yafei Dai. 2020. Pcgcn: Partition-centric
processing for accelerating graph convolutional network. In 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE, 936–945.

[64] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[65] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming. 1–12.

[66] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and
Yufei Ding. 2021. GNNAdvisor: An Adaptive and Efficient Runtime System for
GNN Acceleration on GPUs. In 15th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2021, July 14-16, 2021, Angela Demke Brown
and Jay R. Lorch (Eds.). USENIX Association, 515–531. https://www.usenix.org/
conference/osdi21/presentation/wang-yuke

[67] YangWang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen Leng.
2021. Dual-side sparse tensor core. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 1083–1095.

[68] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2017. Quality of service support for fine-grained sharing on GPUs. In
Proceedings of the 44th Annual International Symposium on Computer Architecture.
269–281.

[69] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2020. Graph neural
networks in recommender systems: a survey. ACM Computing Surveys (CSUR)
(2020).

[70] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[71] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[72] Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan
Xie, and Yu Wang. 2022. Understanding gnn computational graph: A coordinated
computation, io, and memory perspective. Proceedings of Machine Learning and
Systems 4 (2022), 467–484.

[73] Yunming Zhang,Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. Graphit: A high-performance graph dsl. Proceedings
of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[74] Ao Zhou, Jianlei Yang, Yeqi Gao, Tong Qiao, Yingjie Qi, Xiaoyi Wang, Yunli Chen,
Pengcheng Dai, Weisheng Zhao, and Chunming Hu. 2021. Brief industry paper:
Optimizing memory efficiency of graph neural networks on edge computing
platforms. In 2021 IEEE 27th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 445–448.

[75] Xiaojie Zhou, KunWang,Weijia Jia, andMinyi Guo. 2017. Reinforcement learning-
based adaptive resource management of differentiated services in geo-distributed
data centers. In 2017 IEEE/ACM 25th International Symposium on Quality of Service
(IWQoS). IEEE, 1–6.

[76] Yangjie Zhou, Jingwen Leng, Yaoxu Song, Shuwen Lu, MianWang, Chao Li, Minyi
Guo, Wenting Shen, Yong Li, Wei Lin, et al. 2023. uGrapher: High-Performance
Graph Operator Computation via Unified Abstraction for Graph Neural Networks.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2. 878–891.

[77] Yangjie Zhou, Mengtian Yang, Cong Guo, Jingwen Leng, Yun Liang, Quan Chen,
Minyi Guo, and Yuhao Zhu. 2021. Characterizing and demystifying the implicit
convolution algorithm on commercial matrix-multiplication accelerators. In 2021
IEEE International Symposium on Workload Characterization (IISWC). IEEE, 214–
225.

[78] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network platform.
Proceedings of the VLDB Endowment 12, 12 (2019), 2094–2105.

62

