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Abstract—The prosperity of machine learning applications
has promoted the rapid development of GPU architecture. It
continues to integrate more CUDA Cores, larger L2 cache and
memory bandwidth within SM. Moreover, the GPU integrates
Tensor Core dedicated to matrix multiplication. Although studies
have shown that task co-location could effectively improve system
throughput, existing works only focus on resource scheduling at
the SM level and cannot improve resource utilization within the
SM. In this paper, we propose Aker, a static kernel fusion and
scheduling approach to improve resource utilization inside the
SM while ensuring the QoS (Quality-of-Service) of co-located
tasks. Aker consists of a static kernel fuser, a duration predictor
for fused kernels, an adaptive fused kernel selector, and an
enhanced QoS-aware kernel manager. The kernel fuser enables
the static and flexible fusion for a kernel pair. The kernel
pair could be Tensor Core kernel and CUDA Core kernel, or
computing-prefer CUDA Core kernel and memory-prefer CUDA
Core kernel. After the kernel fuser provides multiple fused
kernel versions for a kernel pair, the duration predictor precisely
predicts the duration of the fused kernels and the adaptive fused
kernel selector locates the optimal fused kernel version. Finally,
the kernel manager invokes the fused kernel or the original
kernel based on the QoS headroom of latency-critical tasks to
improve the system throughput. Our experimental results show
that Aker improves the throughput of best-effort applications
compared with state-of-the-art solutions by 50.1% on average,
while ensuring the QoS of latency-critical tasks.

Index Terms—Kernel fusion, QoS, GPU scheduling.

I. INTRODUCTION

GPUS have gained widespread acceptance as a flexible ac-
celeration solution for many modern applications [1], [2].

With rapid technological advancements, GPUs are becoming

Received 9 May 2024; revised 27 August 2024; accepted 27 September
2024. Date of publication 10 October 2024; date of current version 20 January
2025. This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFB4501400, and in part
by the National Natural Science Foundation of China under Grant 62302302,
Grant 62232011, Grant 62022057, and Grant 61832006. Recommended for
acceptance by J. H. Ahn. (Han Zhao and Junxiao Deng contributed equally
to this work.) (Corresponding author: Quan Chen.)

Han Zhao, Junxiao Deng, Weihao Cui, Quan Chen, and Minyi Guo are
with the Department of Computer Science and Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: chen-quan@sjtu.edu.cn).

Youtao Zhang is with the Computer Science Department, University of
Pittsburgh, Pittsburgh, PA 15260, USA.

Deze Deng is with the School of Computer Science, China University of
Geosciences, Wuhan 430074, China.

Digital Object Identifier 10.1109/TC.2024.3477995

increasingly powerful. It keeps integrating more CUDA Cores,
larger L2 cache and memory bandwidth. Moreover, in response
to the escalating demand for acceleration in artificial intel-
ligence and machine learning (AI/ML) applications, recently
released commercial GPUs, exemplified by Nvidia Volta [3] and
subsequent architectures, have integrated Tensor Cores within
streaming multiprocessors (SM) to accelerate general matrix
multiplication (GEMM), which constitutes a fundamental op-
eration in AI/ML applications.

Given the abundant computing resources in modern GPUs,
studies have proposed the co-location of multiple applications
onto the same GPU. This effectively improves resource utiliza-
tion and reduces system energy consumption, particularly for
computing servers in data centers. Based on QoS (Quality-of-
Service) demands, we can classify data center applications into
two categories: latency-critical (LC) applications/services and
best-effort (BE) applications. The former refers to those that
have stringent latency constraints, e.g., to recognize interesting
objects from a live video stream without glitches, necessitating
the object detection algorithm to complete within 50ms [4], [5].
The latter refers to those that have no or very loose constraints,
e.g., to breadth-first search a node in a graph without setting a
deadline. It is more cost-efficient to leverage the under-utilized
GPU resources to run some BE applications, while guaranteeing
the QoS in servicing an LC application.

To co-locate LC and BE applications, there are two types of
strategies: non-preemptive methods and preemptive methods.
Non-preemptive methods, e.g., Baymax [6] enables the BE
applications to share the unutilized GPU cycles from LC appli-
cations. Preemptive methods, e.g., Rollover [7], can preempt
the execution of BE kernels to ensure the QoS of LC appli-
cations. However, off-the-shelf GPUs currently do not support
preemption due to the context switch overhead [8], [9]. This
paper focuses on developing novel non-preemptive co-locating
strategies, which are ready to deploy for existing commodity
GPUs.

Since existing co-locating solutions only focus on the
GPU-level time-sharing between LC and BE applications, they
tend to produce suboptimal results on the GPUs with abun-
dant computing and memory resources. Fig. 1 first presents a
suboptimal result example. In this experiment, we use Baymax
[6] co-locates LC services (Resnet50 [10]) and BE applica-
tions (sgemm from Parboil [11]) on an Nvidia RTX Ada6000
GPU. From the figure, we observe that, while the GPU can be

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 14,2025 at 06:28:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1561-5329
https://orcid.org/0009-0003-1239-5134
https://orcid.org/0000-0002-6646-5260
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0001-8425-8743
https://orcid.org/0000-0003-3276-1202
https://orcid.org/0000-0003-0034-2302
mailto:chen-quan@sjtu.edu.cn


ZHAO et al.: ADAPTIVE KERNEL FUSION FOR IMPROVING THE GPU UTILIZATION WHILE ENSURING QOS 387

Fig. 1. The active timeline of Tensor Cores and CUDA Cores when Baymax
is used to run Resnet50 and sgemm.

identified as computation-busy, either Tensor Cores or CUDA
Cores are idle at any given time.

Meanwhile, even for the GPU kernels only using CUDA
Core, they may prefer computing resources or memory re-
sources. The experimental results in Section III-A show that
computing-prefer kernels exhibit 80.5% computing core uti-
lization and 3.15% memory bandwidth utilization. Conversely,
memory-prefer kernels exhibit 85.6% memory bandwidth uti-
lization and 26.1% computing core utilization. When Baymax
co-locates two BE applications only using CUDA Core, either
computing resources or memory resources are in a low utiliza-
tion state at any given time.

The above two problems are referred to as the false high
utilization problem. The main reason behind this is that existing
solutions ignore the fine-grained resource usage of the GPU
kernel. By scheduling a single kernel at any given time, they
lack the ability to utilize the abundant computing and memory
resources. While commodity GPUs place their warp schedul-
ing in the black box, we test various scheduling policies and
have one observation. If different warps in a thread block of
a kernel perform different computations, it allows for paral-
lel utilization of Tensor Cores and CUDA Cores, computing
and memory resources. This occurs because multiple warps
within a thread block remain active simultaneously. By fusing
the Tensor Core kernel and the CUDA Core kernel, or fus-
ing computing-prefer kernel and memory-prefer from different
applications, we could improve the resource utilization within
the GPU.

In this paper, we propose Aker, a kernel fusion and schedul-
ing approach for resolving the false high utilization problem.
In order to ensure the required QoS of LC applications when
fusing kernels, Aker is comprised of a static kernel fuser, a
duration predictor for fused kernels, an adaptive fused kernel
selector and an enhanced QoS-aware kernel manager. Aker
introduces no extra security vulnerability compared with Nvidia
MPS [12]. In both Aker and MPS, the original programs launch
the kernels, and a server process manages the actual execution.
Our contributions are as follows.

• We propose a static kernel fusion method to improve
resource utilization without online generation overhead.
This method uses the persistent thread block to deal
with dynamic inputs, thus avoiding online fusion
overhead.

• We propose accurate prediction models for fused kernels
to ensure the QoS of LC applications. As a fused kernel
runs longer than original LC kernel, we adopt a model-
driven predictor to predict the fused kernel’s duration.

• We propose an adaptive kernel selection method to
search the optimal fused kernel version with maximum

throughput gain adaptively. This method is proposed based
on the theoretical analysis.

• We propose an online kernel management method to ex-
ecute fused kernels. It enables kernel fusion with partial
computation from original kernels. Based on that, it deter-
mines to invoke the original kernel or the fused kernel to
maximize the throughput based on QoS targets.

We evaluate the proposed approach on real hardware (Nvidia
RTX Ada6000 and V100 GPUs). Our experimental results show
that Aker not only ensures the required QoS but also improves
the throughput of the BE applications by 50.1% compared with
Baymax on average (up to 91.6%).

II. RELATED WORKS

In recent years, several schemes have been developed to
improve GPU throughput [13], [14]. To achieve better GPU
scheduling, Wang et al. proposed SMK to exploit block pre-
emption for block-level scheduling [13]. Based on block-level
scheduling, SMK improves the system throughput by dividing
the resources carefully. Wang et al. proposed to scale mem-
ory resources to manage memory bandwidth [15] so that an
application-aware memory scheduler may be developed [16].
Punyala et al. [17] proposed to perform application classifica-
tion and analyze the per-class interference and slow-down. Then
they could find the best matching between classes to maximize
the throughput. These methods focus on the SM-level resource
allocation and try to minimize the interference based on related
metrics.

It is important for ensure QoS (quality of service) in
GPU scheduling [18]. Baymax [6] and Prophet [8] exploited
MPS scheduling to predict performance interference among
co-located GPU applications for a temporally shared GPU.
TimeGraph [19] and GPUSync [20] adopted priority-based
scheduling to guarantee the performance of real-time kernels.
Sedighi et al. [21] proposed to optimize the SM allocation be-
tween component applications, which could improve the system
throughput. Since these works rely on MPS [12] scheduling at
the kernel level, they cannot exploit the parallelism from two
types of computing cores. Wang et al. [7] proposed to employ
fine-grained sharing of SM-internal resources to improve QoS.
When one of co-located kernels has high priority, it would be
scheduled first. These works could only perform the kernel
scheduling at the SM level, which could not alleviate the false
high utilization problem.

HSM [22] and GDP [23] predicted the slowdown of co-
located GPU applications. Compared with Aker, many existing
schemes [22], [23] rely on simulation to validate the effec-
tiveness and thus are not applicable to commodity GPUs. In
addition, these schemes do not consider two types of computing
cores and thus cannot explore the parallelism between Ten-
sor Cores and CUDA Cores. There are also researches [24],
[25], [26], [27] for microbenchmark-based performance model
development for NVIDIA GPUs. These research works only
model the applications’ performance in different hardware, and
could not be adapted for the fused kernel’s duration prediction.
Besides the above researches, there are some researches [28]
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Fig. 2. The active time of the kernels with Baymax.

Fig. 3. The kernels’ computing core and memory utilization.

targets the cluster-level analysis and optimization. They are
orthogonal to Aker.

III. MOTIVATION

In this section, we first elaborate on the false high utilization
problem. We then discuss the potential to improve the resource
utilization within the GPU, and summarize the challenges in
exploiting the opportunity.

A. The False High Utilization Problem

1) Tensor Core and CUDA Core: To elaborate on the false
high utilization problem, we first conduct an experiment to
study the computing core utilization when co-locating the ker-
nels of an LC service and a BE application on a modern GPU.
We choose a non-preemptive co-locating strategy Baymax [6]
to exploit the idle GPU cycles from LC services for BE kernels.
We use five DNN models (Resnet50, Bert, V gg16, V gg11,
Inception3, and V it) as the LC services, and eight tasks (cp,
cutcp, fft, mrif , mriq, sgemm, stencil, lbm) from Parboil
[11] and four tasks (hot3d, lava, path, nn) from Rodinia [29]
as the BE applications in the experiment. Each kernel’s duration
is collected to compute the duration of all the Tensor Core
kernels and CUDA Core kernels.

Fig. 2 shows the duration results of different co-located ker-
nel pairs. The red portion indicates the duration of all Tensor
Core kernels, while the gray portion indicates the duration of
all CUDA Core kernels. We stack the results to show the overall
active time of two hardware. From the figure, we observe that
the computing units’ overall active time equals the QoS target
for all the kernel pairs. This is because the two types of cores
are not active simultaneously.

2) Computing and Memory Resources: Even for the GPU
kernels only using CUDA Core, they may also have differ-
ent preferences between computing and memory resources.
We collect the CUDA Core utilization and DRAM utilization
for the eight tasks from Parboil. Fig. 3 shows the resource
utilization of eight applications. By comparing the utilization
of computing and memory resources, we could classify the

TABLE I
THE NORMALIZED DURATION OF THE

FIVE BENCHMARKS

1st Half 2nd Half Duration
Bench-A Kt Kc 1.03
Bench-B Kt Kt 2
Bench-C Kc Kc 2

Bench-D Kc Km 1.05
Bench-E Km Km 2

applications into computing-prefer kernels (cp, cutcp, fft,
mrif , mriq, sgemm, lava, path) and memory-prefer ker-
nels (stencil, lbm, hot3d, nn). As shown from the figure,
computing-prefer kernels exhibit 80.5% computing core utiliza-
tion and 3.15% memory bandwidth utilization. Memory-prefer
kernels exhibit 85.6% memory bandwidth utilization and 26.1%
computing core utilization. When co-locating two applications
using the same computing cores, either the computing core or
memory bandwidth is in a low utilization state at any given time.

From the above experiments, we conclude that current strate-
gies generate sequential and interleaving execution of co-
located LC service and BE application, which leaves either
computing and memory resources at low utilization state. This
is referred to as the false high utilization problem in this
paper. Our study shows that this problem exists widely when
co-running LC services and BE applications.

B. Potential Parallelism Opportunity

We next study the potential to improve the resource utiliza-
tion within the GPU. We construct several micro-kernels, in
which a kernel block has warps for different computations.

For example, we implement a micro-benchmark “Bench-A”
that fuses a Tensor Core kernel Kt and a CUDA Core kernel
Kc into one kernel. Kt and Kc have the same duration. Kt

uses the Nvidia official GEMM implementation [30], [31]. Kc

has the same grid dimension and block dimension as Kt. Each
thread in Kc performs pure computation using registers and
has negligible memory operations. In Bench-A, the first half
threads of each block are responsible for running Kt, while the
other half is for Kc. We also implement two more benchmarks,
“Bench-B” and “Bench-C”, as shown in Table I. These two
benchmarks run two Kt and two Kc.

Meanwhile, we implement a micro-benchmark “Bench-D”
that fuses a CUDA Core kernel Kc and a CUDA Core
kernel Km into one kernel. Kc and Km also have the same
duration. Kc is a computing-prefer kernel as it performs pure
computation with negligible memory operations. Km is a
memory-prefer kernel, in which each thread computes the
average number between 10 variables. Km does not use the
shared memory, and each memory access reaches the DRAM.
We also implement one more benchmark “Bench-E”, which
runs two Km.

Table I also shows the processing time of different micro-
benchmarks. The time is normalized to the duration of Kt.
From the table, the normalized duration of Bench-A is only
1.03, while that time of either Bench-B or Bench-C is 2. In this
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Fig. 4. The duration of fused kernels with artificial fusion.

experiment, Kt and Kc already occupy all the Tensor Cores and
CUDA Cores, respectively, so that their normalized execution
time is 2. This further indicates that the improved execution
time of “Bench-A” comes mainly from the parallel execution on
both types of computing cores. Exploiting the Tensor Cores
and CUDA Cores in parallel can effectively improve the
overall system throughput.

As shown from Table I, the normalized processing time of
Bench-D is only 1.05, while that time of either Bench-C or
Bench-E is 2. In this experiment, although Kc and Km all use
CUDA Core, they have different preferences over computing
and memory resources. This further indicates that the improved
execution time of “Bench-D” comes mainly from the parallel
usage of computing and memory resources from different ker-
nels. Kernel fusion between computing-prefer kernel and
memory-prefer kernel could also effectively improve the
overall system throughput.

C. Challenges in Utilizing Kernel Fusion

However, directly fusing two kernels does not always bring
throughput improvement. For example, we choose Kt as the
Tensor Core kernel and kernels from Parboil [11] as the CUDA
Core kernel. Fig. 4 shows the processing time of the fused
kernels. The performance of the independent execution of each
kernel is normalized to 1. From the figure, the performance of
most fused kernels is around 2, indicating direct kernel fusion
brings no throughput improvement. Moreover, the kernel fusion
between two CUDA Core kernels from Parboil shows the same
experimental results.

Direct kernel fusion’s inefficiency comes from the contention
for SM resources. Since the fused kernel launches fewer blocks
on an SM, both components are slowed down. Even with the
flexible resource allocation for two component kernels, there
may also exist many possible fusion versions for one kernel
pair. How to search for the optimal one is also an open question.
Besides, kernel fusion is very likely to introduce a longer return
time. Thus, inappropriate fusion may result in QoS violations.

To summarize, there exist four challenges in utilizing the
kernel fusion to improve the resource utilization.

• The kernel fusion has to adapt to dynamic inputs and
diverse kernels. While online fusion methods bring high
overhead, a static fusion method needs to adapt to dynamic
inputs at runtime.

• The kernel fusion has to search for the optimal fused
kernel version. Since there exist multiple kernel versions
with limited SM resources, it is hard to locate the optimal
fused kernel version.

Fig. 5. The design overview of Aker.

• The kernel fusion has to quickly and precisely predict
the performance of the fused kernel. It is challenging
to make an accurate prediction, as different warps run
different computations.

• The kernel fusion demands QoS-aware online kernel
management. When multiple kernels from LC services
and BE applications are available, Aker should identify
the fusion decision that maximizes the throughput while
ensuring the QoS of LC services.

IV. THE AKER DESIGN

In this section, we present the Aker design to alleviate the
false high utilization problem and guarantee the QoS of LC
service at the same time in modern GPUs.

As shown in Fig. 5, Aker is a kernel fusion and schedul-
ing approach that consists of a static kernel fuser, a duration
predictor for fused kernels, an adaptive fused kernel selector
and an enhanced QoS-aware kernel manager. The kernel fuser
supports the static and flexible fusion for a kernel pair. The
kernel pair could be Tensor Core kernel and CUDA Core ker-
nel, or computing-prefer kernel and memory-prefer kernel. The
duration predictor exploits a two-stage LR (linear regression)
model to predict the duration of fused kernels. When the static
kernel fuser could provide multiple fused kernel versions for a
kernel pair, the adaptive fused kernel selector searches for the
optimal fused kernel. Finally, the enhanced QoS-aware kernel
manager determines the appropriate kernels (original kernel or
fused kernel with partial workload fusion) to invoke at runtime.

To efficiently fuse two kernels, Aker transforms the dynamic
grid dimensions of the to-be-fused kernels to static grid dimen-
sions using Persistent Thread Block (PTB). The transformation
eliminates the need to perceive the grid dimension online. Since
the to-be-fused kernels use a different amount of resources (e.g.,
thread slots, registers, and shared memory), another challenge
is how to enable flexible resource usage between two kernels.
(Section V).

As the fused kernel tends to finish in a longer time (compared
to original runs), we need to predict their duration to ensure
the QoS of LC services. The challenge here is that the widely-
used linear regression for predicting a kernel’s latency [8] is not
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applicable for fused kernels, as the warps of a thread block run
different codes in a fused kernel. In this paper, we analyze the
warp scheduling in a block of a fused kernel, and predict the
execution of a fused kernel using a two-stage linear regression
model (Section VI).

When the static kernel fuser provides multiple fused kernel
versions due to limited resources, Aker needs to locate the
optimal fused kernel with maximum throughput gain. Since
different kernel versions could show better performance under
different inputs, it is hard to determine a fused kernel for all
inputs. We resolve this problem by assisting the optimal kernel
fusion using kernel split (Section VII).

We maintain a kernel queue for each BE application. The ker-
nels within this kernel queue have temporal dependency. When
making the scheduling decision, Aker picks the first kernel in
LC kernel queue and checks whether there is a kernel in BE
kernel queues can be fused with the picked LC kernel. The LC
kernels and BE kernels are not limited to a specified type. We
prioritize the selection of the fused pair that can ensure the QoS
of LC service and maximize the throughput of BE applications
at the same time. If such a fused kernel cannot be found, the
LC kernels are executed first. After all LC kernels complete
the computation, the kernel fusion with two BE kernels is also
considered (Section VIII).

Aker can be used to manage long-running LC ser-
vices in private data centers where all the workloads are
known, and Aker has access to the applications’ codes. This
is similar to those in prior works [6], [7], [8]. To achieve
long-term throughput improvement, it is acceptable to pro-
file the LC services and BE applications and then statically
fuse kernels. Moreover, kernel fusion can also be done on
the clouds based on an application’s occurrence if the code is
available. If an application’s occurrence exceeds a threshold,
Aker prepares fused kernels for its kernels. The threshold is
adjustable.

V. STATIC KERNEL FUSION

In this section, we describe the direct kernel fusion, its lim-
itations, and present our method to address these limitations.

A. Classifying Kernels

Before kernel fusion, we need to classify the kernels into
different categories. TC kernels and CD kernels could be classi-
fied based on the hardware usage. Furthermore, we classify CD
kernels into computing-prefer kernels, memory-prefer kernels,
and neutral kernels. A kernel with memory bandwidth utiliza-
tion exceeding 50% is classified as a memory-prefer kernel.
When a kernel has computing core utilization greater than 50%
and memory utilization less than 50%, it is classified as a
computing-prefer kernel. If both two resource utilization of a
kernel are below 50%, it is regarded as a neutral kernel. This is
because memory-prefer kernels may also have high computing
core utilization. In this paper, Aker first considers the kernel
fusion of TC kernel and CD kernel, computing-prefer kernel
and memory-prefer kernel. Secondly, Aker considers the kernel

Fig. 6. An example process of direct kernel fusion.

fusion of computing-prefer kernel and neutral kernel, memory-
prefer kernel and neutral kernel.

Some kernels may have different features depending on the
input. Specifically, when the input to a kernel is small, it has
a relatively smaller thread block number. Consequently, it fails
to leverage all the parallelism available on the GPU and might
be classified as either a neutral kernel or a computing-prefer
kernel. On the other hand, when the kernel has a larger input,
it has a larger thread block number. This enables it to utilize
all the parallelism on the GPU and might then be classified
as a memory-prefer kernel. Faced with the above problem, we
only categorize kernels based on their resource usage when
the GPU parallelism is fully utilized. This is because 96.1%
of GPU kernels make use of all the GPU parallelism in the
benchmarks.

B. Direct Kernel Fusion

The direct fusion strategy is to fuse the thread blocks of two
different kernels into a new block. Fig. 6 shows an example
process of fusing a CUDA Core kernel (CD kernel for short)
and a Tensor Core kernel (TC kernel for short).

In the figure, TC kernel has 2 blocks, each block has 2 warps,
and thread id ranges from 0 to 63. CD kernel has 4 blocks, each
block has 4 warps, and thread id ranges from 0 to 127. After
kernel fusion, the fused kernel has 4 blocks, each block has
6 warps, and thread id ranges from 0 to 191. For each block
in the fused kernel, threads 0-63 are responsible for TC kernel
part while threads 64-191 are for CD kernel part. Since each
thread in the block determines its computation based on its
block id and thread id, Thread 64-191 needs to be converted
to thread 0-127 using the thread step. Besides, each warp in
the first two blocks is active while two warps are idle for the
last two blocks. The direct fusion for two CD kernels is the
same process.

The direct kernel fusion method requires two kernels’ block
numbers and block dimensions in advance. However, the block
number is determined by the task’s input that is only known
online. The direct kernel fusion method is inappropriate for
LC services that have unstable inputs.
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Fig. 7. A fused kernel’s construct example.

C. PTB-Based Kernel Fusion

To eliminate the impact of the block number and block
dimension, we fix the block number of each kernel using
Persistent Thread Block (PTB) technique [32], [33]. PTB’s idea
is to treat each issued block as a worker on SM. With PTB, each
persistent block is assigned some tasks that correspond to the
original thread blocks. A persistent thread block exits while it
completes its assigned tasks.

We can use the source-to-source compilation to create the
PTB version of a kernel CD_kernel (named by ptb_CD_kernel).
The compilation idea is to add one for loop inside the orig-
inal kernel, and recompute the block id in each iteration. The
original block number becomes a parameter of the PTB version
kernel. In this way, ptb_CD_kernel has the fixed block number,
though the original version has a dynamic block number that
depends on the inputs. With the fixed block number, the PTB-
based kernels can be fused offline.

D. Flexible Kernel Fusion

The naive PTB-based method fuses two kernels’ blocks at
a 1:1 ratio. However, this ratio is likely to slow down one
component kernel. For example, assuming there are two CD
kernels K1 and K2 for fusion. To achieve original performance,
K1 needs 2 persistent block per SM, and each block uses 16KB
shared memory; K2 needs 1 persistent block per SM, and each
block uses 32KB shared memory. When K1 and K2 are fused,
a new block uses 48KB shared memory. In this case, only a
block could be issued on one SM when an SM only has 64KB
shared memory, and the K1’s performance drops seriously.

Faced with the above problem, we could enhance the fusion
with flexible fusion ratio. Fig. 7 shows one fusion example for
fusing two kernels using a 2:1 ratio. The new block contains
two block of K1 and one block of K2. After supporting the
flexible kernel fusion, the resource utilization on the SM could
be maximized.

However, there is still possible that the resources of one SM
could not host all the persistent blocks required by two compo-
nent kernels. Since the resources on the SM have a hard limit,

Fig. 8. The fused kernel’s duration with changing load ratios, when the
component kernel K1 has fixed workload.

we have to make tradeoffs between two component kernels.
Assuming that K1 and K2 all need 4 persistent blocks, the SM
could support the possible 4:2, 3:3, 2:4 fusion ratios, but not 4:4
ratio. Without any prior knowledge, it is difficult to determine
the optimal fusion ratio of a kernel pair. Static kernel fuser first
generates all possible fused kernel versions, the fused kernel
selector further locates the optimal one (Section VII).

Note that, we have also attempted to fuse three kernels into
a single fused kernel. Experimental results reveal that this not
only fails to bring about performance improvement but even
leads to performance degradation. The reason for this is that the
SM resources hardly host all the persistent blocks required by
two component kernels. If a third kernel continues to be fused, it
will cause severe slowdowns of the two existing kernels. Hence,
in this paper, we only focus on kernel fusion with two kernels.

VI. MODELING FUSED KERNELS

In this section, we propose a duration prediction approach
that could accurately predict the fused kernel’s duration.

A. Analyzing the Duration of Fused Kernel

To construct a model for predicting the duration of fused
kernels, we study the fused kernel’s duration through extensive
profiling. Assuming that two kernels K1 and K2 are fused into
kernel Fuse1. Since the block setup of Fuse1 is static, its
duration could only be affected by the computation workloads
of two component kernels. These two parts correspond to the
original computation time of K1 and K2, and we use Xk1 and
Xk2 to represent them. To model the fused kernel’s duration
from two variables, we then define a metric Load_ratio in
Equation 1 to simplify the process. Based on that, our profiling
experiments could be divided into two parts: changing load ratio
with fixed K1’s original time, and changing K1’s original time
with fixed load ratio.

Load_ratio=Xk2 / Xk1 (1)

For the first experiment, we fix the K1’s workload, i.e, with
static Xk1, and model the fused kernel’s duration with different
workloads of the K2, i,e, a changing Xk2. Fig. 8 shows the
fused kernel’s duration of the tgemm-fft and sgemm-fft pairs.
tgemm and sgemm are K1, and fft is K2. tgemm uses Tensor
Core. sgemm and fft use CUDA Core. In the figure, the x-axis
is the load ratio, and the y-axis is the duration. From the figure,
the duration curve fits a two-stage linear regression model. In

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 14,2025 at 06:28:44 UTC from IEEE Xplore.  Restrictions apply. 



392 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 2, FEBRUARY 2025

Fig. 9. The fused kernel’s duration with fixed load ratios, when the
component kernel K1 has changing original time.

particular, there exists an inflection point before the line exhibits
a sharper slope, and the sharper slope is 1. This means that the
duration growth of the K2 is converted to the duration growth
of the fused kernel after the inflection point.

Therefore, we may divide the duration prediction of a fused
kernel into two stages: the co-running of two kernels and the
solo-running of one kernel. There is an opportune load ratio
that the two kernels always co-run and finish at the same time.
For the duration curve before the inflection point, the solo-run
kernel in the fused kernel becomes the K1. The smaller slope
is decided by the increasing co-running time of two kernels.

For the second experiment, we fix the load ratio, i.e., with
static Load_ratio, and model the fused kernel’s duration with
different workloads of the K1, i.e., a changing Xk1. We choose
several load ratios randomly to show the experimental results
better. Fig. 9 shows the duration curves for tgemm-fft and
sgemm-fft pair with different load ratios. Each curve in these
two figures corresponds to one fixed load ratio. The x-axis is the
K1’s original time, and the y-axis is the fused kernel’s duration.
As shown in the figure, the fused kernel’s duration has a linear
relationship with the K1’s original duration while the load ratio
is fixed.

Based on the above analysis, we have two observations. First,
the fused kernel’s duration shows a two-stage linear regression
model, if the K1’s original duration is fixed. Second, when
the load ratio is fixed, the fused kernel’s duration has a linear
relationship with the K1’s original time.

In addition to the above two observation, we also have an-
other observation from Fig. 8. As shown from the figure, the
normalized fused kernel’s duration is always longer than the LC
kernel yet shorter than the serial execution. This is attributable
to two reasons. Firstly, the two kernels contend for limited
SM resources, which slows down the execution of the ker-
nels. Secondly, since two kernels prefer different resources, the
parallel execution brings about the throughput improvement.
Since the longer duration may bring the QoS violations, we
have already taken this into account in our scheduling method
(Section VIII-C1).

B. The Two-Stage Linear Regression Model

We infer the two-stage linear regression model through warp
scheduling. For modern GPUs [34], warps are switched on the
SM to hide the computation gap and the switching strategy is

Fig. 10. The warp execution timelines of different kernels.

deterministic [35], [36]. When multiple warps perform compu-
tation alternately, warp switching is triggered by memory access
or synchronization.

Assuming that K1 is TC kernel and K2 is CD kernel,
Fig. 10(a) and 10(b) show the warp execution timeline of PTB-
based K1 and K2, respectively. These persistent warps process
the original warps’ computation in a loop. With the determin-
istic warp switching strategy and the warps’ instruction loop,
PTB-based warp execution exhibits a repetitive pattern. Recent
studies have shown that an LR-based (linear regression) model
can precisely predict the duration of PTB-based kernels [8],
[22], [23].

Though the block of a fused kernel contains two component
warps, they are scheduled with the same strategy. As shown in
Fig. 10(c), TC warps and CD warps run at the same time as they
could not utilize all the resources alone. Due to memory con-
tention, the execution behaviors of two component warps are
different from original execution. Nonetheless, while both TC
warps and CD warps have instruction loops, the warp execution
of the fused kernel still exhibits a repetitive pattern when they
co-run. Therefore, LR is applicable for the fused kernel when
the two component warps co-run.

As discussed in Section VI-A, the execution of a fused kernel
can be divided into: the co-run of two component kernels, and
the solo-run of one component kernel. While both stages could
be predicted using LR, the fused kernel’s duration have a lin-
ear relationship with one component kernel’s original duration
if the two kernels have static load ratio. This corresponds to
the second observation in Section VI-A.

Meanwhile, the load ratio also determines the duration of the
fused kernel. When a fused kernel has opportune load ratio, two
component warps always co-run, and finish at the same time.
The opportune load ratio corresponds to the inflection point in
Fig. 8, and the execution process is shown in Fig. 10(c). When
a fused kernel has a smaller load ratio, the fused kernel has the
additional solo-run stage of K1. The execution process on the
left side of Fig. 8 has the case (c) as the first stage and the case
(a) as the second stage. When a fused kernel has a larger load
ratio, the fused kernel has the additional solo-run stage of K2.
The execution process on the right side of Fig. 8 has the case
(c) as the first stage and the case (b) as the second stage.
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Fig. 11. The duration of different fused kernel version for the same kernel
pair (tgemm-fft) with changing load ratios.

To conclude, the performance of the fused kernel can be
predicted using a two-stage linear regression model based on
the two component kernels’ load ratio. This corresponds to the
first observation in Section VI-A. We give the formulaic proof
for the above conclusions in the conference version [37]. Due
to page limitations, we skip this part here.

C. Building Duration Models

Based on the above observations, we could predict a fused
kernel’s duration in three steps. (1) we predict the K1 and K2’s
original time using LR models, which are Xk1 and Xk2. (2) we
compute the Load_ratio based on Equation 1. (3) we predict
the fused kernel’s duration using the two-stage linear regression
model in Fig. 8.

In the step (1), each kernel needs its own LR model. The
input is the block number in non-PTB mode, and the output is
the kernel’s duration, as prior studies [8], [22], [23]. Like these
works, we collect runtime input and corresponding performance
data when these applications are executed independently. Based
on these performance data, we train its duration prediction
model for each kernel.

In the step (3), each fused kernel needs its own two-stage LR
model. For each fused kernel, we collect its duration in four load
ratios: 10%, 20%, 180%, 190%, and build the initial duration
model. Furthermore, we use online co-running data to update
the model parameters. Whenever the prediction error exceeds
10%, Aker updates the model using online data. Note that, we
always set the GPU to the highest frequency to ensure that we
obtain accurate and stable experimental results.

VII. SEARCHING THE OPTIMAL FUSED KERNEL

As stated in Section V-D, there may exist multiple fused
kernel versions for a kernel pair with different fusion ratios. The
blue line and the red line in Fig. 11 show the durations of two
fused kernel versions of the same kernel pair. Each thread block
of Fuse1 contains two persistent blocks of tgemm and two
persistent blocks of fft. Each thread block of Fuse2 contains
three persistent blocks of tgemm and one persistent block of
fft. Since there are different thread blocks in the kernels, these
two lines are not overlapped.

As shown from the figure, the kernel pair prefers different
fused kernel versions under different load ratios. Under these
circumstances, an intuitive idea is to choose the best-performing
kernel version based on the runtime load ratio. However, such

a naive approach brings great runtime selection overhead and
storage overhead.

Faced with this problem, we further obtain two observations
through extensive experiments. First, the makespan reduction
of the fused kernel version reaches its maximum at the inflec-
tion point. (The makespan reduction is calculated using two
component kernels’ serial execution time and the fused kernel’s
duration.) This is because two component kernels always co-run
with the opportune load ratio. Under other load ratios, the fused
kernel always needs the solo-run stage after the co-run stage.
The solo-run stage could not bring makespan reduction.

Secondly, since the component kernel may not be able to
launch enough persistent blocks, the solo-run stage of the fused
kernel suffers severe performance degradation. Specifically,
tgemm requires 3 persistent thread blocks to attain a simi-
lar performance of the original kernel, and fft necessitates 3
persistent thread blocks to achieve a similar original perfor-
mance. However, the limited resources on the SM only support
2 tgemm blocks and 2 fft blocks for Fuse1. The solo-run
stage of the fused kernel could only utilize 2 tgemm persistent
thread blocks or 2 fft persistent thread blocks to perform the
execution. Therefore, the solo-run stage of the fused kernel
suffers from performance slowdown compared to the original
kernel.

Under these circumstances, if a fused kernel always exits
the computation with the opportune load ratio and uses the
original kernel to execute the remaining workload, then this
kernel pair can achieve better makespan reduction. The red
line and the black line in Fig. 11 show the execution time
of fused kernel-only and opportune fused kernel plus original
kernel respectively. As shown in the figure, the fused ker-
nel exiting with the opportune load ratio has better makespan
reduction.

Based on the above two observations, we can locate the
optimal kernel fusion version. Assuming that a fused kernel
always exits the computation with the opportune load ratio
and the original kernel is used for the remaining workload,
the optimal fused kernel version is the one with maximum
makespan reduction at its opportune load ratio.

We further provide proof of the above conclusion. Suppose
there are two kernels K1 and K2, and two fused kernel versions
Fuse1 and Fuse2. The execution time of Fuse1 under the
opportune load ratio of 1 :X is Y . The execution time of Fuse2
is N under the opportune load ratio of 1 :M . The range of X
and M is [0,1]. When the runtime load ratio of K1 and K2 is
1 :R, the duration of Fuse1 is Y + (R−X), and the duration
of Fuse2 is N + (R−M). At the same time, we can calculate
that the makespan reduction of Fuse1 at the opportune load
ratio is 1 +X − Y , and the makespan reduction of Fuse2 at
the opportune load ratio is 1 +M −N .

Y +R−X >N +R−M

1 +X − Y < 1 +M −N (2)

Equation 2 shows one possible comparison results. We find
that these two inequalities are completely equivalent. This
means that if a fused kernel achieves better makespan reduction
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Fig. 12. The PTB implementation enabling kernel split.

at its opportune load ratio, it will achieve better makespan
reduction at any load ratio.

Since we obtain the initial two-stage LR model of all fused
kernel versions for a kernel pair in Section VI-C, we can further
calculate their makespan reduction under their opportune load
ratios. Furthermore, we can locate the optimal fused kernel
version of this kernel pair. Experimental results in Section IX-F
show that Aker could locate all the kernel pairs benefiting from
the kernel fusion, and search the fused kernel version with
optimal makespan reduction.

VIII. ONLINE KERNEL SCHEDULING

In this section, we describe the mechanism used to schedule
the kernels of LC services and BE applications.

A. End-to-End Latency Breakdown

A query’s duration is the time interval between when the first
kernel is issued and when the last kernel ends. As shown in
Fig. 13, Q’s end-to-end latency (TQ) comprises four parts. They
are: (1) the running time of queued kernels (Tqueue); (2) the
running time of the kernels of Q (Tlc), i.e., the aggregated time
of its TC kernels (Q-TC1, ..., Q-TCn in Fig. 13), and CD kernels
(Q-CD1, ..., Q-CDm in Fig. 13); (3) the running time of fused
kernels (Tfuse); and (4) the running time of kernels of BE tasks
(Tbe), which could be selected from the kernels (B-CDi and
B-TCj in Fig. 13).

B. Kernel Split Implementation

As proved in Section VII, if a fused kernel always exits the
computation with opportune load ratio and the original kernel
is responsible for the remaining workload, the system through-
put will be further improved. This execution process requires
splitting one BE kernel’s into two kernels: one for kernel fusion
and one for original kernel solo-run.

As shown in the Fig. 12, the PTB-based kernel could be
added with two parameters start_block_id and end_block_id
to support kernel split. Assuming there is a BE kernel with
1024 blocks and Aker needs to split one BE kernel K1 into
two kernels K1−1 with 256 blocks and K1−2 with 768 blocks,
Aker just needs to launch the kernel K two times. As for the
first kernel launch, start_block_id is 0 and end_block_id is
255. As for the second kernel launch, start_block_id is 256
and end_block_id is 1023.

Fig. 13. The online scheduling an LC query Q with Aker.

C. Scheduling Policy

Aker uses both kernel fusion and kernel reorder to maximize
the system throughput. The kernel fusion could be assisted by
kernel split to maximize the throughput improvement. Fig. 13
presents the end-to-end scheduling procedure of an LC query
Q colocated with BE applications. Let Tqos represents the QoS
target of a query Q, and TQ represents Q’s end-to-end latency.
Q’s QoS is satisfied only when Equation 3 is satisfied.

TQ = Tqueue + Tlc + Tfuse + Tbe ≤ Tqos (3)

The runtime kernel scheduler of Aker decides to perform
kernel reorder or fusion for each LC kernel and BE kernel based
on Equation 3 as follows.

1) Calculating QoS Headroom: As discussed above, Tqueue

is known and cannot be reduced when the query Q is launched.
Aker first predicts the original solo-run duration of Q (denoted
by Tori_solo) for calculating its QoS headroom (denoted by
Thr). Tori_solo is known ahead of the execution based on the
prediction models. Thr reveals the free GPU time left for ker-
nels from BE applications while co-running with Q. When the
first kernel of Q is issued, Thr = Tqos − Tori_solo − Tqueue.
Based on Thr, each time a kernel of Q is launched, Aker iterates
over the ready BE kernels to check whether there are potential
opportunities of kernel fusion and kernel reorder.

Suppose the current kernel of Q is a TC kernel and its
predicted duration is Ttc, and there is a ready CD kernel from
BE applications with duration Tcd. The opportune load ratio
requires split CD kernel into two kernels with duration Tcd−1

and Tcd−2. The CD kernel with duration Tcd−1 is used for
kernel fusion and the CD kernel with duration Tcd−2 is put back
to the kernel queue.

Aker then predicts the duration of the kernel fused from the
two kernels with opportune load ratio (denoted as Tk_fuse). If
Equation 4 is satisfied, Aker actually fuses the two kernels and
launches the fused kernel. Equation 4 states that the two kernels’
fusion could improve the resource utilization inside the SM, and
the fused kernel’s duration is within the QoS headroom.

Tk_fuse − Ttc < Thr (4)

More specifically, the kernel fusion spends Tk_fuse − Ttc to
complete the CD kernel, which originally takes Tcd−1. After the
kernel launch, Aker updates Thr to be Thr − (Tk_fuse − Ttc).

If all the ready BE kernels may not be fused with the current
kernel of Q, Aker checks whether a BE kernel can be launched
directly. For a BE kernel with prediction duration Ttmp, if Ttmp
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is smaller than Thr, it is launched directly and Thr reduces by
Ttmp. Otherwise, the kernel is not launched.

Note that, if multiple BE applications are active, Aker fuses
the kernels with the highest throughput gain. The throughput
gain can be calculated to be Tgain = Tcd−1 − (Tk_fuse − Ttc).
In this equation, Tk_fuse − Ttc is the time for Aker to finish the
CD kernel, which has original time Tcd−1. Aker fuse the kernel
of Q with the BE kernel with the largest Tgain to maximize the
system throughput.

Furthermore, if all the kernels from LC service is launched,
Aker also considers the kernel fusion from two BE applications.
As long as the duration of the fused kernel is within the QoS
headroom, the fused kernel is launched to maximize the sys-
tem throughput. Also, the fused kernel of two BE kernels also
utilize the kernel split to improve the system throughput using
opportune load ratio.

2) Multiple Active LC Queries: It is possible that multiple
LC queries are active. In this case, in order to ensure the QoS of
all the LC queries, we choose to complete the early queries, and
only perform kernel reorder and kernel fusion for the last arrived
query. For instance, if an LC query Qi is still active when Q
arrives, the kernels of Qi must complete the computation first.
Otherwise, the long processing time of Qi may already result
in the QoS violation of Q.

When we calculate the QoS headroom of Q, the GPU time
reserved for Qi’s unexecuted kernels needs to be subtracted.
Therefore, we monitor the remaining GPU time that each query
needs to complete the computation. For a specific query, such
as Qi, we calculate its remaining GPU time by subtracting the
time of its completed kernels from its predicted overall time
(Tlc of Qi).

Suppose there are n active LC queries when Q is launched.
Let Tlc_1, ..., Tlc_n represent each query’s remaining GPU time.
Equation 5 calculates Q’s QoS headroom when it is issued. If
the Thr of the new query is close to 0, Aker directly launches
all the kernels to the GPU.

Thr = Tqos − Tqueue − Tori_solo −
n∑

i=1

Tlc_i (5)

IX. EVALUATION

In this section, we describe the implementation of Aker, and
evaluate it in improving the throughput of BE applications while
ensuring the QoS of LC services.

A. Implementation of Aker

To evaluate Aker method, we implement the kernel fuser and
the runtime kernel manager. The kernel fuser first transforms
all original kernels to PTB mode in a source-to-source way.
Second, the kernel fuser generates all possible fused kernel
versions for a kernel pair following Section V-D. Then, for each
fused kernel version, the adaptive selector locates the opportune
load ratio using only four profiling points. Based on that, the
selector could find the optimal fused kernel version for the
kernel pair. Lastly, a dynamic-link library is created for online
invocation.

TABLE II
EXPERIMENTAL SPECIFICATIONS

CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

GPU Nvidia RTX Ada6000

Software CUDA Version: 12.6, CUDNN Version: 9.3

LC Services
Resnet50 (batch size: 64), Bert (256), VGG16 (64)

VGG11 (64), Inception3 (64), Vit(48)

BE Apps [11], [29]
cp, cutcp, fft, mrif, mriq, sgemm, stencil, lbm,

hot3d, lava, path, nn

We implement the kernel manager from the scratch. The
manager determines to invoke the original kernels or the fused
kernels through the dynamic libraries. We implement shared
memory-based parameter passing to pass parameters from the
original kernels to the fused kernel. When a user request arrives,
we record the current timestamp. Given that a DNN model
comprises hundreds of kernels, synchronizing the timestamp
upon the launch of each kernel would incur substantial over-
head. Hence, we synchronize the timestamp every 10 ms. In
the interval between two synchronizations, we merely schedule
the kernel based on the kernel duration prediction. This enables
us to enhance hardware utilization and avoid QoS violations
resulting from duration prediction errors.

To implement Aker method in the python-based frameworks
like TensorFlow, the fused kernels are compiled into customized
operators through custom-op [38]. At runtime, Tensorflow in-
vokes the customized or original operators.

B. Experiment Setup

Table II shows the detailed experimental setup. We use
six commonly used DNN models, Resnet50, Bert, V gg16,
V gg11, Inception3, and V it as LC applications; use twelve
applications from Parboil [11] and Rodinia [29] as BE ap-
plications. The LC applications are generated by the DNN
compiler Rammer [33]. The BE applications are categorized
into computing-prefer (cp, cutcp, fft, mrif , mriq, sgemm,
lava, path) and memory-prefer (stencil, lbm, hot3d, nn).
We use 50ms to be the QoS target, and LC queries arrive in
Poisson distribution [39]. The batch sizes of the LC services
are the maximum available batch sizes under the QoS target.
All the benchmarks in Parboil use CUDA Cores, and LC
applications use both Tensor Cores and CUDA Cores.

The experiments are mainly carried out on a server equipped
with an Nvidia RTX Ada6000 GPU. Aker does not rely on any
particular features of Ada6000 and is easy to be set up on other
GPUs that integrate Tensor Cores. We also evaluate Aker on an
Nvidia V100 GPU in Section IX-I.

C. Improving Throughput

In this subsection, we compare Aker with Baymax [6] and
Tacker [37]. Baymax improves GPU utilization while guaran-
teeing the QoS by reordering kernels. Tacker also guarantees the
QoS and improves GPU utilization by kernel reorder and ker-
nel fusion. Equation 6 calculates the throughput improvement
[6], [40] of Aker and Tacker compared with Baymax. In the
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Fig. 14. The throughput improvement of BE applications at co-location with Aker and Tacker.

equation, TBaymax, TTacker, and TAker represent the process-
ing time of BE applications using Baymax, Tacker, and Aker.
The throughput improvements only include the results from
BE applications as ensuring QoS is sufficient for LC services
[6], [40].

Throughput improvementTacker =
TTacker − TBaymax

TBaymax

Throughput improvementAker =
TAker − TBaymax

TBaymax
(6)

Fig. 14 presents the throughput improvement of Aker and
Tacker compared with Baymax. From the figure, Aker achieves
an average of 50.1% (and up to 91.6%) improvement over
Baymax. Tacker achieves an average of 24.3% (and up to
47.4%) improvement over Baymax. Tacker and Aker improve
the throughput for all 72 (=6×12) co-location sets. This is be-
cause Tacker and Aker exploit both adaptive kernel fusion and
kernel reorder, which help to explore the intra-SM parallelism
and the idle GPU time. As a comparison, Baymax only utilizes
the idle cycles with kernel reorder.

Meanwhile, Aker achieves an average of 25.7% (and up to
74.9%) improvement over Tacker. This is because Aker further
optimizes the kernel fusion. It enables the maximum makespan
reduction when using kernel fusion. Besides, Aker could exploit
the kernel fusion between two CD kernels, which also brings
throughput improvement.

Fig. 15 presents the execution traces of LC application
Resnet50 and two BE applications (sgemm and fft) with Tacker,
which help to clarify the reason why Tacker performs better
than Baymax. In the figure, the two rows represent the active
time of the CUDA core and Tensor cores, respectively. We use
blue bars to represent the co-run with Tacker. From Fig. 15,
Tacker successfully exploits the parallelism from the two types
of cores. Aker also has a similar execution trajectory, which
also helps Aker to enjoy the intra-SM parallelism using kernel
fusion.

In addition, Aker also supports kernel fusion between
computing-prefer kernel and memory-prefer kernel, even
though two kernels all use CUDA Core. Fig. 16 shows the
hardware utilization after kernel fusion. Comparing Figs. 3
and 16, it is obvious that most fused kernels achieve the high
computing core utilization and high memory utilization. Exper-
imental results show that all fused kernels achieve an average

Fig. 15. The active timelines of the two types of cores.

Fig. 16. The computing core and memory utilization of fused kernels from
two CD kernels.

Fig. 17. The 99%-ile latencies of the LC services in all the 50 co-location
cases with Aker and Tacker.

of 63.8% computing core utilization and an average of 30.5%
memory utilization. Therefore, the fused kernels improve the
overall throughput.

D. Guaranteeing QoS

Fig. 17 presents the 99%-ile of the LC applications under
Aker and Tacker in the 72 co-location sets. As shown in the
figure, Aker and Tacker ensure the QoS for LC applications
under all the co-locations. This is because Aker and Tacker de-
termine whether to perform kernel fusion based on the queries’
QoS headroom in the runtime. If there is a possible QoS viola-
tion, Aker and Tacker launch the kernels of the LC application
directly.
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Fig. 18. The duration prediction errors of the PTB kernels.

Fig. 19. The duration prediction errors of the fused kernels.

Moreover, LC applications in all the co-locations have dif-
ferent 99%-ile latency, because Aker and Tacker consider the
kernel fusion based on the runtime load. When there is no
opportunity for kernel fusion, Tacker and Aker complete the
execution of the LC application as soon as possible and use the
headroom before the next query to execute the BE application.
In addition, Aker has smaller 99%-ile latency in all co-locations
compared with Tacker. This is because Aker could support the
opportune kernel fusion and Tacker has to suffer from the solo-
run stage of the fused kernel. Nonetheless, Aker and Tacker all
could effectively use the QoS headroom in all the co-locations
to run the BE kernels, the 99%-ile latencies of the LC applica-
tions are satisfied within the QoS target.

E. Accuracy of the Duration Predictor

In this subsection, we evaluate the duration prediction ac-
curacy for fused kernels. As presented in Section VI-A, Aker
first predicts the duration of each kernel before fusing, and then
predicts the duration of the fused kernel based on the predicted
duration of the to-be-fused kernels.

In this experiment, we first investigate the prediction accu-
racy of the linear regression models on a single PTB kernel.
These LR models accept the basic runtime configuration (input
parameters) of kernels and predict their running time. Fig. 18
shows the prediction error of these single kernels prediction
error. The predicted running time differs from the actual value
by at most 7.3%, and the average prediction error is less than
2.8%. Therefore, Aker is able to use linear regression to predict
the duration of PTB kernels.

We also evaluate the two-stage LR model’s prediction ac-
curacy for the fused kernels. The experimental results about
the fused kernel between TC kernel and CD kernel have been
shown in the conference version [37]. In addition, Aker further
supports the kernel fusion between two CD kernels. Fig. 19
presents the prediction accuracy for these fused kernels. Since
Aker enables the opportune kernel fusion using kernel split,
Fig. 19 shows the prediction accuracy for the opportune kernel
fusion. As show from the figure, these models achieve an error
rate lower than 8.9%.

Fig. 20. The throughput improvement of Aker and Tacker under the INT8
format.

Fig. 21. The throughput improvement of Aker and Tacker under the 30ms
QoS target.

The two-stage LR modeling technique is accurate for pre-
dicting the duration of fused kernels.

F. Different Format

While our main experiments are conducted using FP16 for-
mat for DNN models, we add one experiment using INT8
format, we investigate the throughput improvement of Aker and
Tacker using INT8 format in this subsection.

Fig. 20 shows the corresponding experimental results. As
shown, Aker achieves an average of 51.3% (and up to 77.4%)
improvement over Baymax. Tacker achieves an average of
17.0% (and up to 33.7%) improvement over Baymax. Aker and
Tacker still attain throughput improvement, because they do
not rely on the specific format. The throughput improvement is
rooted in the parallelism of Tensor Core and CUDA Core and
the parallel usage of computing core and memory bandwidth.
Therefore, as long as there is system throughput using kernel
fusion, Aker and Tacker could improve the system throughput.

G. Constrained QoS Headroom

In this subsection, we investigate the throughput improve-
ment of Aker and Tacker under a more constrained system.
The QoS targets are set as 30ms. While the QoS headroom
in Section IX-C is 16.1ms on average, the QoS headroom for
Resnet50 and V it in this experiment is about 4ms and the
headroom for Bert is 11.2ms.

Fig. 21 shows the throughput improvement of Aker and
Tacker compared with Baymax under the 30ms QoS target.
Aker achieves an average of 124.9% (and up to 245.7%) im-
provement over Baymax. Tacker achieves an average of 62.1%
(and up to 99.8%) improvement over Baymax. Aker and Tacker
achieve greater throughput improvements, because Baymax has
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Fig. 22. Throughput improvement on an Nvidia V100.

Fig. 23. Throughput improvement co-locating 2 LC tasks.

less throughput gain under strict QoS conditions. Meanwhile,
Aker’s throughput improvement compared with Tacker is re-
duced. This is because the limited QoS headroom prevents Aker
benefiting from the kernel fusion between two BE applications.

H. Adapting to Other GPU Generations

Besides RTX Ada6000, Fig. 22 shows the throughput im-
provement of BE applications with Aker and Tacker on a V100
GPU [3]. As observed, Aker increases the throughput of BE ap-
plications by 45.7% on average (up to 83.8%), Tacker increases
the throughput of BE applications by 24.9% on average (up to
44.3%). This demonstrates that Aker and Tacker could be easily
adapted to other GPUs.

By comparing Figs. 22 and 14, Aker improves the throughput
of BE applications more on RTX Ada6000 than on V100.
This is because all DNN models have shorter completion time,
which brings more idle cycles for Baymax. As the baseline
value becomes larger, the performance improvement decreases
slightly. In addition, we only need to update the prediction
models to deploy Aker on other GPUs, as kernels show different
performance on different GPUs. No other update is required.

I. Co-Location of Two LC Tasks

In this subsection, we investigate the throughput improve-
ment of Aker and Tacker while co-locating 2 LC tasks and 2
BE tasks. Specifically, we halve the load of all DNN models in
Section IX-C. Fig. 23 shows the corresponding experimental
results. As shown, Aker achieves an average of 48.7% (and up
to 90.6%) improvement over Baymax. Tacker achieves an av-
erage of 24.1% (and up to 46.2%) improvement over Baymax.
Aker and Tacker still attain throughput improvement, because
they are designed to deal with multiple LC tasks. Since they
are aware of the QoS target of all LC tasks, they could also

utilize kernel fusion to improve the system throughput while
guaranteeing the QoS.

J. Overhead

Aker brings slight offline overhead and online overhead. As
for the online scheduling, Aker only considers fusing the first
kernel in each application’s kernel queue each time. Suppose 10
LC services and 50 BE applications co-run on a GPU. When
making the scheduling decision, Aker picks the first kernel
in the LC kernel queue and checks whether there is a kernel
in BE kernel queues that can be fused with the picked LC
kernel. Therefore, Aker considers 50 kernel pairs for fusion.
This operation takes 1.2 milliseconds. In the same case, we also
measure the overhead of the static scheduling by forcing Aker
not to fuse the kernels. The overhead of the static scheduling is
0.5 milliseconds on average. Therefore, the online scheduling
overhead of Tacker is acceptable.

Aker’s offline overhead comes from the kernel fusion pro-
cess, the optimal kernel search process and the model training
process. For a BE application in Parboil, compiling a fused
kernel and generating the shared library takes 0.9 seconds, and
the size of the shared library is 62KB on average. Meantime,
the DNN models contain 206 kernels on average. In total, there
are 21 types of kernels. While preparing the fused kernels,
we generate the 157 fused kernels and save 22 fused kernels
that exhibit throughput enhancement. We implement the above
process in 840 lines of code.

X. CONCLUSION

Aker uses kernel fusion to maximize the throughput of BE
applications while ensuring the required QoS of LC services.
It is comprised of a static kernel fuser, a duration predictor for
fused kernels, an adaptive fused kernel selector and an enhanced
QoS-aware kernel manager. The kernel fuser enables the static
and flexible fusion for a kernel pair. The kernel pair could
be Tensor Core kernel and CUDA Core kernel, or computing-
prefer CUDA Core kernel and memory-prefer CUDA Core ker-
nel. After preparing multiple fused kernel versions for a kernel
pair, the duration predictor precisely predicts the duration of the
fused kernels and the adaptive fused kernel selector locates the
optimal fused kernel version. At runtime, the kernel manager
determines whether to perform the kernel fusion. Aker improves
the throughput of BE applications by 50.1% on average (up to
91.6%), while ensuring the required QoS target.
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