
E2bird: Enhanced Elastic Batch for Improving
Responsiveness and Throughput of Deep

Learning Services

Weihao Cui , Quan Chen , Han Zhao, Mengze Wei, Xiaoxin Tang , and Minyi Guo , Fellow, IEEE

Abstract—Weaim to tackle existing problems about deep learning serving onGPUs in the view of the system. GPUs have beenwidely

adopted to serve online deep learning-based services that have stringentQoS(Quality-of-Service) requirements. However, emerging deep

learning serving systems often result in poor responsiveness and low throughput of the inferences that damage user experience and

increase the number of GPUs required to host an online service. Our investigation shows that the poor batching operation and the lackof

data transfer-computation overlap are the root causes of the poor responsiveness and low throughput. To this end, we proposeE2bird, a

deep learning serving system that is comprised of aGPU-residentmemory pool, amulti-granularity inference engine, and an elastic batch

scheduler. Thememory pool eliminates the unnecessary waiting of the batching operation and enables data transfer-computation overlap.

The inference engine enables concurrent execution of different batches, improving theGPU resource utilization. The batch scheduler

organizes inferences elastically to guarantee theQoS. Our experimental results on anNvidia Titan RTXGPU show that E2bird reduces the

response latency of inferences by up to 82.4 percent and improves the throughput by up to 62.8 percent while guaranteeing theQoS target

comparedwith TensorFlowServing.

Index Terms—GPUs, DL serving, latency, throughput, responsiveness

Ç

1 INTRODUCTION

DEEP learning is famous for the high prediction accuracy
and has been adopted in many online services that

require short response time (e.g., intelligent personal assis-
tant [1], online translation [2], and interactive photo editor
[3]). GPUs have been proved to be particularly suitable for
these computational demanding deep learning-based serv-
ices, especially after the introduction of tensor cores in Nvi-
dia Volta GV100 GPU architecture for speeding up neural
network processing. It has been reported that GPUs can
speed up the model training by more than 50� CPU [4].
Due to the high computational ability of GPUs, more and
more service providers start to use GPUs to host the deep
learning-based services [5], [6], [7].

For deep learning-based services, multiple inferences are
often organized and executed in batches, because a single
inference cannot fully utilize all the resources of a GPU

(e.g., the latest Nvidia Titan RTX has 72 SMs). Table 1
depicts the details about the correlation between batch size
and throughput by profiling the execution of different deep
learning models with different batch sizes. In Table 1, BS
represents the batch size of each model, Lat represents the
latency for processing such a batch, and Req/s represents
the corresponding throughput in the form of the amount of
the inferences processed per second. Three models are pro-
filed, including Resnet_50, Resnet_101, and Resnet_152
(Res50, Res101, and Res152 in short). In all cases, the latency
and throughput increase with the growth of the batch size
used in processing inference batch. Owing to the positive
correlation between latency and throughput, there exists a
trade-off between latency and throughput. From a user’s
perspective, the priority is processing inference requests in
a smaller batch to get quicker responsiveness. Nevertheless,
the deep learning service providers prefer to processing
larger batches to support the higher load with the same
hardware resources. An efficient batching policy is needed
to retain high throughput while guaranteeing the quality of
deep learning services.

Emerging deep learning serving systems, such as Tensor-
Flow Serving [8], adopt a CPU-side batching mechanism to
improve the inference processing throughput. Generally, in
most deep learning serving systems adopting CPU-side
batching, inferences are batched to gain high parallelism, as
shown in Fig. 1. Batch operations of input data are per-
formed on the CPU side [8], [9], since the input of a deep
learning network running on GPUs must be stored in a con-
tinuous address space. Then service providers can configure
the maximum batch size s and the maximum waiting time t
of an inference. Either the number of queued inferences

� Weihao Cui, Han Zhao, and Mengze Wei are with the Department of Com-
puter Science and Engineering, Shanghai Jiao Tong University, Shanghai
200240, China. E-mail: {weihao, zhaohan_miven, mzweilz}@sjtu.edu.cn.

� Quan Chen and Minyi Guo are with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China, and also with the Shanghai Institute for Advanced Communication
and Data Science, Shanghai Jiao Tong University, Shanghai 200240,
China. E-mail: chen-quan@sjtu.edu.cn, guo-my@cs.sjtu.edu.cn.

� Xiaoxin Tang is with the Department of Computer Science, Shanghai Uni-
versity of Finance and Economics, Shanghai 200433, China. E-mail: tang.
xiaoxin@sufe.edu.cn.

Manuscript received 27 Mar. 2020; revised 19 Oct. 2020; accepted 16 Dec. 2020.
Date of publication 28 Dec. 2020; date of current version 12 Jan. 2021.
(Corresponding author: Quan Chen.)
Recommended for acceptance by B. Di Martino.
Digital Object Identifier no. 10.1109/TPDS.2020.3047638

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021 1307

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6646-5260
https://orcid.org/0000-0002-6646-5260
https://orcid.org/0000-0002-6646-5260
https://orcid.org/0000-0002-6646-5260
https://orcid.org/0000-0002-6646-5260
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0001-5832-0347
https://orcid.org/0000-0002-7404-2073
https://orcid.org/0000-0002-7404-2073
https://orcid.org/0000-0002-7404-2073
https://orcid.org/0000-0002-7404-2073
https://orcid.org/0000-0002-7404-2073
https://orcid.org/0000-0003-0034-2302
https://orcid.org/0000-0003-0034-2302
https://orcid.org/0000-0003-0034-2302
https://orcid.org/0000-0003-0034-2302
https://orcid.org/0000-0003-0034-2302
mailto:weihao@sjtu.edu.cn
mailto:zhaohan_miven@sjtu.edu.cn
mailto:mzweilz@sjtu.edu.cn
mailto:chen-quan@sjtu.edu.cn
mailto:guo-my@cs.sjtu.edu.cn
mailto:tang.xiaoxin@sufe.edu.cn
mailto:tang.xiaoxin@sufe.edu.cn

reaches s, or the earliest inference waits for t, the queued
inferences are organized to be a batch. When the last infer-
ence of a batch arrives, the input data of all the inferences
are transferred to the GPU together. The GPU then processes
the batched inferences together in a tight-couple way. After
the processing completes, the results of all the inferences are
transferred to the CPU together. Moreover, only after a batch
of inferences returns, the next batch can be launched. This
mechanismworkswell if the load of the deep-learning-based
service is stable, and s and t are tuned carefully before the
service starts based on the inference load.

However, online services often experience a diurnal load
pattern. Emerging batching mechanism results in poor
responsiveness at low load and low throughput at high
load. At low load, the response latency of the first inference
in a batch is delayed by at least t (the processing time also
increases due to the batching). At high load, due to the
sequential processing of different batches, GPUs are idle
when copying the input data of the inferences from CPU to
GPU and copying the result of inferences from GPU to
CPU. GPUs are not fully utilized even if the requests
queued up seriously at the CPU side, resulting in the low
throughput.

Eliminating unnecessarywaiting at low load and overlap-
ping data transfer and computation at high load can improve
the responsiveness and throughput of deep-learning-based
services. However, if a short maximum waiting time t is
adopted for eliminating the unnecessary waiting, each batch
will have only a small number of inferences. When the load
of the service bursts, the new inferences suffer from long
latency. This is mainly because these new inferences are not
launched to the GPU before the previous batch returns, even
though the GPU is not fully utilized by the small batch of
inferences. Configuring a short maximum waiting time of
inference is not helpful in reducing the latency of inferences
in online services (discussed in Section 3).

The concurrent kernel execution feature [10] of the cur-
rent GPUs that allows independent kernels in different
CUDA streams1 to run concurrently on different SMs of a
GPU can be leveraged to solve the above problem. We
observe that processing multiple inferences in a single large
batch using a single CUDA stream has similar performance
with processing these inferences using multiple streams
with smaller batches when scheduled with reasonable strat-
egies. Therefore, if we can elastically launch multiple infer-
ence batches of different batch sizes to the GPU when the

load bursts, the GPU can be better utilized even if the short
maximum waiting time is adopted. The elastic batching also
enables data transfer-computation overlap, thus improving
the throughput.

Based on this observation, we propose E2bird, a novel
deep learning serving system to improve the responsiveness
and throughput of online deep learning-based services.
E2bird is comprised of a GPU-resident memory pool, a multi-
granularity inference engine, and an elastic batch scheduler. The
memory pool holds the input data of all the inferences.
Whenever an inference is submitted, its input data (and
other meta information) is directly transferred into the
memory pool. The memory pool enables data transfer-com-
putation overlap by transferring data in the backend when
the GPU is processing other inferences. The multi-granular-
ity inference engine provides multiple CUDA streams that
process inference batches of different granularities, thus
enabling concurrent kernel execution. The batch scheduler
organizes the inferences in the memory pool into batches of
different granularities elastically and schedules them to the
appropriate workers in the engine. The batch scheduler can
be configured with different scheduling policies.

Our main contributions are as follows:

� Comprehensive analysis of batch scheduling for deep
learning-based services on GPU. The analysis demon-
strates that emerging batching policies result in long
latencies and low throughput of online services.

� A GPU-side inference batching mechanism. We imple-
ment a novel GPU-side memory pool that stores the
inputs of all the inferences in the GPU global mem-
ory. It enables transfer-computation overlap and
elastic batching.

� Novel elastic batch scheduling policies. We design a
multi-granularity inference engine, and a corre-
sponding batch scheduler, which consists of two
scheduling algorithms that minimizes the response
latency of inferences while improving the through-
put of services.

Our experimental results on an Nvidia Titan RTX GPU
show that E2bird reduces the response latency of inferences
by up to 82.4 percent and improves the throughput by up to
62.8 percent while guaranteeing the QoS target compared
with TensorFlow Serving (hereinafter called the “TF-
Serving”) running with optimized scheduling setup.

E2bird is our follow-up work of Ebird [11], which has
been published at the 37th IEEE International Conference
on Computer Design (ICCD’19). It is different in the follow-
ing aspects from our previous paper:

� E2bird attests to the theoretical benefits of the GPU resi-
dent memory pool. Through this, E2bird can precisely
predict the maximal improvement for different mod-
els, which provides a suggestion when optimizing
the system.

TABLE 1
Correlation of Batch Size, Latency, and Throughput

Model Res 50 Res101 Res152

BS Lat Req/s Lat Req/s Lat Req/s

4 6.8 588 11.8 338 17.3 231
8 12.1 661 20.6 388 29.2 273
16 21.5 740. 36.2 441 49.5 323
32 40.1 798 65.4 489 93.7 341

Fig. 1. Execution timeline of batched inference requests.

1. A CUDA stream is a sequence of operations that execute in
issued-order, while operations issued to different CUDA streams exe-
cute in parallel.

1308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

� E2bird exploits several techniques to reduce the global
memory overhead caused by multiple inference workers.
E2bird is capable of configuring the alive workers
flexibly in the inference engine by reusing memory
for intermediate results and sharing the weight
parameters between workers.

� E2bird abstracts a scheduling model for guiding the efficient
scheduling. E2bird analyzes the interference between
inferenceworkers by the qualitative approach.

� E2bird provides a new scheduling policy. The perfor-
mance of different deep learning models varies with
the architecture of deep learning models and GPUs.
The new proposed scheduling policy leverages an
offline phase to get the best configuration of the elas-
tic batch scheduler for different models instead of
the coarse-grained scheduling in Ebird.

� E2bird extends the experimental evaluation. E2bird
achieves an improvement of throughput by 9.9 per-
cent averagely comparedwith Ebird.

2 RELATED WORK

In this section, we discuss the state-of-the-art techniques
and their limitations in three aspects.

2.1 Traditional QoS Management on GPUs

There has been a lot of work about traditional QoS manage-
ment on GPUs. Baymax [12] is the first one that identifies the
root causes for QoS violation on GPUs. Baymax [12], Prophet
[13], and Flep [14] focus on using either a runtime system or
a compilation engine to achieve QoS goals at a software level.
With the emerging ofMPS [15], Laius [16] targets eliminating
the QoS violation on spatialmultitasking accelerators such as
Nvidia Volta GV100 GPU. To get a generalized solution, the
management and scheduling units in the above previous
work are all at the level of kernel functions of GPUs. Schedul-
ing at the level of kernel functions brings in scheduling over-
head for each kernel function, which is inevitable for deep
learning services with too many kernel functions in it. These
systems [12], [13], [14], [16], where the end-to-end latency is
controlled through API provided by Nvidia fail to take the
deep learning serving properties into account. However,
they all take into account the co-location of user-facing appli-
cations and batch applications on GPUs, which can be future
work for us. Fine-grained QoS [17] aims to propose QoS
mechanisms for a fine-grained form of GPU sharing. Its key
idea is that multiple kernels share the same SM to improve
utilization. Due to no support of hard preemption and con-
text reset on real hardware, its implementation is based on
the simulator, GPGPU-Sim [18] instead of real hardware.
Hence, the simulation property makes it unable to apply to
current deep learning services.

2.2 Optimizations in Deep Learning Systems

Researchers havemade an effort to developGPU-based deep
learning systems for particular purposes like better perfor-
mance [19], [20], [21], [22], [23]. Some works focus on the
optimization in mainstream deep learning systems, includ-
ing Tensorflow [24], Caffe [25], Pytorch [26], and others. Gen-
erally, offering services in datacenters only needs the
forward computation of the whole deep learning model

training process, which is implemented but not optimized
for serving in the frameworks mentioned above. Although
the accuracy of the model evaluating, and performance of
training are two keys to deep learning research, the quality
of service and utilization of the full serving system play
essential roles in providing deep learning services.

Many projects [8], [9], [27], [28] provide the capability of
deep learning serving. Clipper [9] is a modular architecture
which builds on existing deep learning frameworks. Clipper
introduces techniques including caching, batching, and
adaptive model selection to reduce inference latency and
improve throughput on CPUs and GPUs. To support frame-
works such as Spark [29], Tensorflow [24], and so on, Clip-
per adopts to serve the deep learning model in the CPU-
based container. Such coarse-grained management leads to
low GPU utilization. Nexus [27] is another deep learning
serving framework, which focuses on the accelerating on a
GPU cluster. Nexus divides the origin whole deep learning
model into fragments of deep learning models. Then, Nexus
uses several batching techniques to guarantee the QoS tar-
get when deploying multiple sub-models to a GPU cluster.
Nexus emphasizes the large service scale. Tensorflow Serv-
ing [8] is the model serving version of Tenserflow, which
provides the mechanisms including load balance, model
versioning, and QoS protection. Tensorflow Serving pro-
vides several batching guides [30] for users to guarantee the
QoS when serving, which will be discussed detailedly in
the rest of this paper. The batching policies employed in the
above frameworks all lie in the CPU-side batching mecha-
nism where E2bird concentrates to give a better solution.

2.3 Accelerating Deep Learning Computation

Much work has focused on accelerating the inference of par-
ticular deep learning models. BatchMaker [31], DeepCPU
[32], and GRNN [33] are all specially designed to improve
inference speed for RNNs. Accelerating particular models
depends on particular properties. Therefore, such work is
short of generalization and is not able to figure out the exist-
ing problems for all deep learning models. Some work uses
model compression techniques to reduce the size of the
deep learning model and accelerate its inference. A couple
of developing trends are pruning [34], [35], and low-bit
quantization [36], [37], [38]. Optimization, like accelerating
deep learning inference, can be regarded as complementary
to E2bird to get better performance.

3 BACKGROUND AND MOTIVATION

In this section, a typical pipeline of deep learning serving is
given out first. Then we use experiments to dig out the exist-
ing problems and expound the direction to solve them.

3.1 Typical Pipeline

A typical pipeline of deep learning service includes the fol-
lowing steps. The serving systems load models, process
inference when receiving the inference requests, and return
corresponding inference results. Simultaneously, the serving
systems update the parameters of models in the background
when oldermodels can not guarantee enough accuracy.

Hence, deep learning serving covers a broad array of tra-
ditional online services and deep learning. Deep learning

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1309

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

serving systems provide modules [8] that service RPC
requests to carry out inference using loaded models. In such
modules, QoS, load balance, resource isolation, and high
utilization are fundamental issues, which is similar to tradi-
tional online services. Meanwhile, deep learning models
must be updated basing on the real-time data. Therefore,
deep learning serving systems have some new features,
including model versioning, model loading. In the rest of
the paper, we focus on the trade-off between QoS and high
throughput for accelerating deep learning serving systems
on GPUs.

3.2 Existing Problems

We investigate the problems of existing deep learning serv-
ing systems for online services with a diurnal load pattern.
Without loss of generality, we use TF-Serving as the repre-
sentative serving system and use Resnet_152 (Res152 in
short), widely used in image classification services, as the
representative network to perform the investigation. To
emulate the pattern, we increase the submit frequency of
the inference requests for every 150 inferences.

Fig. 2 shows the end-to-end latencies of the inferences
when different batching policies are adopted in TF-Serving.
In the figure, the shadowed area shows the load variation of
Res152, the x-axis shows the arrival order of the inferences,
and the y-axis shows the latencies of the inferences.
“NO_Wait” and “OPT_Wait” represent the policies that set
the maximum waiting time of an inference request to 0 and
30ms, respectively. The optimal maximum waiting time is
identified according to the official guide of TF-Serving [30].
For all the policies, the maximum batch size is 32, which is
the recommended batch size for Res152 in many research
papers [9]. “Static” policy is similar to “OPT_Wait”, except
the batch size is fixed to 32. If there are less than 32 valid
inferences in a batch, the batch is padded to have 32 infer-
ences with dummy inferences to better utilize the tensor
cores in GPU.

As observed from Fig. 2, NO_Wait achieves the shortest
latency when the load is low but suffers from long latency
at the high load that results in the QoS violation. On the con-
trary, OPT_Wait achieves much shorter latency at high load
but suffers from relatively long latency at low load. Mean-
while, the static policy always performs worse than the
OPT_Wait policy. TF-Serving recommends the service pro-
viders to adopt the OPT_Wait batching policy.

To better understand how the batched inferences are proc-
essed on a GPU, Fig. 3 presents the trace of processing infer-
ences with the OPT_Wait policy at high load. The execution
trace is capturedwith the official profiling tool nvprof [39] pro-
vided byNvidia. In the figure, “HtoD” and “DtoH” represent

the operations of copying data from main memory to GPU
and fromGPU tomainmemory, respectively. “Computation”
represents the execution of the kernels.

As shown in Fig. 3, the GPU is idle between adjacent
batches. This is mainly because TF-Serving schedules differ-
ent batches sequentially. Only after the result of the current
batch is transferred to the main memory, the input data of
the next batch can be transferred to GPU. The scheduling
overhead and the data transfer together result in the large
idle gap. This figure also explains the reason that the NO_W-
ait policy results in long latency at high load. If NO_Wait is
adopted, a batch often has a small number of inferences and
cannot fully utilize the GPU. In this case, the inference
requests queued at the CPU side will not be launched until
the previous batch completes even if the GPU is not fully uti-
lized. The resulted long queueing time is the root cause of
the long latency at high load with the NO_Wait policy.
According to the above investigation, the emerging deep learning
serving systems result in the long latency of inferences and the low
processing throughput. The root causes of the two problems
are the long waiting time for batching, the low GPU utiliza-
tion due to the sequential processing of different batches,
and the lacking of transfer-computation overlap.

3.3 The Ways to Solve the Existing Problems

A deep learning serving system that maximizes the
throughput while satisfying the QoS target and minimizes
the latency of inferences at low load is required to cater to
the diurnal load pattern. We propose E2bird, an adaptive
deep learning serving system to achieve the above pur-
poses. According to the above analysis, E2bird should have
the following abilities.

� E2bird should be able to overlap data transfer and compu-
tation to minimize the GPU idle time between adjacent
batches. By keeping the SMs of a GPU busy, more
inferences can be processed at a high load. However,
state-of-the-art systems have no input pipeline that
can deliver data for the next batch when the current
batch is being processed. E2bird needs to design a
software mechanism to overlap the transfer and
computation.

� E2bird should be able to run multiple batches of inferences
concurrently. Sharing computing and memory is
enabled. With this ability, when the load of the ser-
vice bursts, the new inferences can be executed
immediately if the GPU is not fully utilized.

� E2bird should be able to organize inferences into batches of
different granularities elastically. This ability minimizes
thewaiting time of inferences and improvesGPUutili-
zation. When a GPU is processing a large batch of
inferences, a small batch of inferences can be launched
to utilize the remaining GPU resources and vice versa.
State-of-the-art systems (e.g., TF-Serving) fix the maxi-
mumbatch size during the lifetime of service.

Fig. 2. The end-to-end latencies of the inferences with different batching
policies when the load of the service bursts.

Fig. 3. Snapshot of inference processing with OPT_Wait. Inference proc-
essing with NO_Wait is similar except the kernels are shorter.

1310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

4 METHODOLOGY

In this section, we elaborate on the design overview of
E2bird. Fig. 4 shows the design overview of E2bird, a deep
learning serving system that is composed of an offline pro-
filer, a GPU resident memory pool, a multi-granularity inference
engine, and an elastic batch scheduler.

The workflow of the system is divided into two phases. In
the offline phase, essential information for scheduling is pro-
filed by executing the deep learning models under different
constraints, including QoS goal, GPU platforms and so on.
Then the elastic batch scheduler and multi-granularity infer-
ence engine are configuredwith the collected information.

In the online phase, the GPU resident memory pool keeps
inputs of inference requests one by one in sequence. It ena-
bles data transfer-computation overlap. The multi-granular-
ity inference engine maintains multiple workers that run
and return the result to the host independently and concur-
rently. The workers are configured for processing inferences
in different batch sizes. The elastic batch scheduler organizes
the inferences in the memory pool into batches of different
sizes elastically and assigns them to a suitable worker, based
on the load and the running states of the workers. The elastic
batch scheduler works with two scheduling algorithms,
named N-Ebird and E-Ebird. In the offline phase, N-Ebird
only needs the maximum batch size allowed for guarantee-
ing the QoS target. However, E-Ebird needs extra offline pro-
filing to get the best configurations of the inference engine
under different load for each deep learningmodel.

5 GPU RESIDENT MEMORY POOL

In this section, we first discuss the design and theoretical
improvement of the memory pool in detail. Finally, we vali-
date the reasonability of designing the memory pool.

5.1 Design of GPU Resident Memory Pool

Considering the disadvantages of traditional batching oper-
ations, we design a GPU resident memory pool to replace
the original batching operations on CPU. The GPU resident
memory pool acts as a circular buffer, which holds input
data of different inferences in sequence in a continuous
address of GPU’s global memory. The memory pool keeps
allowing transferring individual request input from CPU to

GPU, instead of waiting until the last request in a batch
comes. The memory pool transfers the input data of differ-
ent requests serially in order of arrival. In this way, we can
get the mapping from input to output and return inference
result to the corresponding request.

Fig. 5 shows the structure of the memory pool. InMutex
guarantees that only one inference’s input is transferred at a
time. InStream andOutStream are two CUDA streams that
are responsible for communication between the memory pool
and the multi-granularity inference engine. Requests are also
responded through these two streams. Data in the memory
pool are organized in slots. Each slot mainly contains five
components, as listed in Table 2. In order to transfer input
data for an inference, InStream calls cudaMemcpyAsync and
records the corresponding InEvent.

Suppose that a worker in the multi-granularity inference
engine needs to process four slots input data (index from 0 to
3). Since InEvents of Slot 0� 2 happen before InEvent of
Slot3, this worker only monitors the occurrence of InEvent
of Slot3 to check whether all the four input data are ready. It
is noted that all InDevPtrs in adjacent slots belong to a con-
tiguous global memory space, which enables the input data
can be organized into batches of different sizes. When the
worker finishes the computation task, results are output to
the corresponding OutCpuPtr, and OutEvent is recorded
into OutStream. As OutEvent occurs, the memory pool
responds to the user. For efficient batching, the number of
slots in the memory pool is recommended to be several times
ofMaxInf , which is the maximum number of alive inference
requests as described in Table 3.

5.2 Benefits of GPU Resident Memory Pool

Thanks to the GPU resident memory pool, the waiting time
is excluded on the host, as the input data is transferred as
soon as the request arrives. Requests get concatenated one

Fig. 4. Overview of E2bird serving system.

Fig. 5. Structure of GPU resident memory pool.

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1311

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

by one automatically when entering the memory pool. No
extra CPU resources are needed to keep the batch queue.
The batch size is later determined by the elastic batch
scheduler.

The memory pool also brings benefits in terms of data
transfer-computation overlap. As aforementioned, we get a
new execution timeline of the batched requests. The left
side of Fig. 6 shows the origin round-robin way of execu-
tion. The right side of Fig. 6 shows how the batched requests
are executed theoretically after introducing the memory
pool. The GPU resident memory pool acts as a buffer zone
between the incoming requests and the scheduler. The
received request waits for its turn to get processed on GPU
instead of queuing on the CPU. The worker in the inference
engine directly fetches the ready input stored in the mem-
ory pool instead of waiting for data transfer.

� ¼ tT
tT þ tc

¼ 1

1þ tc
tT

; (1)

Comparing the two execution timelines, Equation 1
expresses the upper limit of the theoretical throughput
improvement. Let �, tT , and tC represent the ratio of the
throughput increase, data transfer time, and computation
time. Analyzing this equation gives us some hints: �1 The
efficiency of the memory pool dominates the defacto
throughput improvement. With a lower overhead of mem-
ory pool, E2bird can get closer to the upper limit; �2 The
ratio of computation time to data transfer time(tctT) deter-
mines the upper limit. Thus the throughput improvement
varies with the tc

tT
of different deep learning services. The

deep learning services with low tc
tT

get greater improvement
than those with high tc

tT
.

5.3 Validating Reasonability

Despite theoretical benefits, there may be a doubt in the
effectiveness of the GPU resident memory pool. Typically,
transferring a single large file between disk and memory is
faster than transferring multiple small files with the same
total volume. Similarly, it is also possible that individual
input data transfer through PCI-e declines performance.

To validate the reasonability of the memory pool, we
conduct a simple experiment in which 256 pictures are cop-
ied from CPU to GPU through PCI-e to simulate data trans-
ferring. A total of 256 pictures are divided into N
fragments, where N may equal to 1; 2; 4; 8; 16; 256.
The recorded elapsed time of transferring 256 pictures with
different N is shown in Fig. 7. The x-axis represents the
binary logarithm of the number N . The right y-axis repre-
sents the latency of memory operations for transferring 256
pictures. As we can see, splitting data movement into small
batches has similar performance to data movement in a
large batch. The latency of transferring a large piece of data
and multiple pieces of data with the same total size through
PCI-e are almost equivalent. The maximum difference of
latency between with and without data splitting is lower
than one millisecond (3.9 microseconds for each request),
which is negligible.

Overall, our design philosophy of the memory pool is
supported by this experiment. The performance stability of
the memory pool is guaranteed in spite of the brought-in
overhead.

6 MULTI-GRANULARITY INFERENCE ENGINE

In this section, we exploit the multi-granularity inference
engine to enable multiple inference workers to run concur-
rently. We also adopt techniques to reduce the global mem-
ory overhead caused by multiple workers, validate the
performance of the inference engine, and discuss the config-
uration of multiple workers.

6.1 Enabling Concurrent Multiple Batches

Themulti-granularity inference engine is aimed at adapting to
bursty load. Multiple workers are kept alive simultaneously
in the inference engine. Each worker can be configured with

TABLE 2
Parameters of Slot in Memory Pool

Parameters Explanation

index Serial ID of inference request
InDevPtr Device address of input
InEvent Input CUDA event
OutCpuPtr Host address of output
OutEvent Output CUDA event

TABLE 3
Parameters of Elastic Batch Scheduling Algorithm.

Parameters Explanation

DevPtr Device address where input data begins
N Number of ready input in memory pool
Q Queue of idle workers
MaxInf Maximum inferences allowed alive
CurInf Number of alive inferences

MemState State of GPU resident memory pool
(only used in E-Ebird)

EngineConfs Different engine configurations for
various load (only used in E-Ebird)

CurConf Current configuration of multi-granularity
inference engine (only used in E-Ebird)

Fig. 6. Improvement of GPU resident memory pool.

Fig. 7. Latency of split Memcpy and computation.

1312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

different batch sizes and run independently since they are
bound to different CUDA streams. Therefore, the inference
engine is capable of launching multiple workers to process
the inferences according to the load. The batch size summa-
tion of all the busy workers increases in real-time when the
load rises.

The idle workers reside in a priority queue called idle
queue, regularly updated by the scheduler introduced in
Section 7. To cooperate with the scheduling policy, the
workers in the idle queue are sorted in descending order
according to its batch size by using a red-black tree. Each
worker is responsible for processing the batched requests
and returning the result of the inference to the host side.
After finishing processing, the worker enters the idle queue,
which will be re-sorted automatically.

6.2 Reducing Global Memory Overhead

Without careful global memory management, keeping mul-
tiple workers alive in the inference engine consumes much
global memory space of GPUs. In those deep learning train-
ing systems, several techniques have been developed to
relieve global memory consumption, including dynamic
memory allocation, re-computation, and memory swap-
ping [40], which have negative impacts on performance.
These techniques are all kinds of a trade-off between mem-
ory and performance, which is not applicable to deep learn-
ing serving. The passion for high performance is the first
rule when it comes to online service. We mainly make good
use of two static memory optimizations to reduce global
memory consumption while guaranteeing the high perfor-
mance of inference workers [41] . Afterward, the inference
engine avoids the trade-off.

6.2.1 Reuse Memory for Intermediate Results

Commonly, the deep learning model holds a large number
of hidden layers in it. However, only a single layer is
active for computation on GPUs at the same time. In deep
learning serving, intermediate results of hidden layers do
not get involved in any back-propagation in compared to
training. There is no need to store the intermediate results
that no succeeding layers depend on. These properties
allow us to reuse the global memory for computation of
the currently active layer, allocated for preceding or suc-
ceeding layers. When referring to reusing the global mem-
ory, we statically reuse the allocated global memory in
multiple tensors instead of using a unified memory pool.
Consequently, reusing the global memory in the workers
relieves the overuse of global memory brought in by multi-
ple workers without a negative impact on the performance
of inference.

6.2.2 Weight Sharing Among Workers

All the workers in the multi-granularity inference engine
provide the same deep learning service based on the same
model. The weight parameters of the deep learning model
can be shared among all the workers. Owing to the read-only
property, only a copy of weight parameters is enough for all
workers, which further alleviates the globalmemory overuse.

The static memory allocation runs in the following steps.
The multi-granularity inference engine holds all the weight

parameters of the deep learning model, which can be
accessed by all the workers in the engine. Each inference
worker uses two APIs(ScanNetwork(), AllocateGpu()) to con-
duct the static memory allocating for intermediate results.
ScanNetwork() scans the model architecture to get the com-
putation topology, on which the worker can construct the
computation dependencies based. Finally, AllocateGpu()
allocates the global memory for each tensor in the worker
before serving deep learning inference request.

6.3 Performance Validation

There is also a doubt in the performance of the multi-granu-
larity inference engine. For instance, provided that the
latency of running two workers of batch size 4 concurrently
is much longer than one worker of batch size 8, there is a
great possibility that the inference engine leads to QoS vio-
lation when running multiple workers to support a high
load.

We conduct another simple experiment to validate the
inference engine performance. In the experiment, the
CUDNN convolution function, which is the most compute-
intensive function in deep learning networks, is called
repeatedly for 50 times to simulate inference of a deep learn-
ing network, what we call FakeNet. Assuming that 256 infer-
ences of FakeNet are remaining to be processed, we complete
all the inferences withN workers of batch sizeM, whereN �
M ¼ 256 andN varies according to the list(1; 2; 4; 8; . . . : :256).
The elapsed time of each possibility is shown in Fig. 7. The
x-axis represents the binary logarithm of the number N ,
while the left y-axis represents the latency of the inferences
of FakeNet.

As shown in Fig. 7, with the same amount of inferences,
the computation latency of using one worker with a single
large batch size and using multiple workers with multiple
small batch sizes are almost the same as long as we manage
the workers carefully. The computation latency maintains
stable between 1 and 26 ¼ 64, while increases when the
computation is divided into 27 ¼ 128 and 28 ¼ 256. This is
mainly because that too many CUDA streams running
together cause too much context switch overhead of SMs,
which results in severe performance degradation.

The above experiment results show that the performance
of the inference engine can get guaranteed as long as its con-
figuration is carefully managed. Considering the experi-
ment results above and the demand of the elastic batch
scheduling policy in Section 7, the batch size of all workers
in the inference engine all coincide to 2n for better utilization
of hardware, where n is a non-negative integer. Note that
the configuration details of the multi-granularity inference
engine will be discussed in Section 7, which varies accord-
ing to the requirements of the elastic batch scheduler.

7 ELASTIC BATCH SCHEDULER

In this section, we first use a scheduling model to qualita-
tively derive the rules that the elastic scheduling policy
should obey to guarantee the QoS. Then we introduce the
elastic batch scheduler, which improves responsiveness and
throughput by coordinating the memory pool and inference
engine. The elastic batch scheduler consists of two elastic
scheduling policies.

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1313

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

7.1 Rules for Guaranteeing the QoS

The multi-granularity inference engine enables E2bird to
launch a new inference worker whenever there are suffi-
cient inference requests and hardware resources. Certainly,
the latency time of inference requests changes due to co-
running of former and new inference workers. So the elastic
scheduling policy must guarantee that all the busy inference
workers meet the requirement of the QoS.

For the above reason, the QoS guaranteeing of the E2bird
turns into a more complex problem of multi-QoS. For the
qualitative analysis, we abstract a simplified scheduling
model from the co-running of multiple workers in the
multi-granularity inference engine. This simplified schedul-
ing model only consists of two inference workers: the
already-launched one and the new-launched one. The rea-
son for that is, all the already-launched workers can be con-
sidered as a big worker who meets the requirement of the
QoS without the interference of the new-launched worker.

Fig. 8 shows the execution timeline for the simplified
scheduling model. Here, the represents worker_1 which
consists of all the already-launched workers and the
represents the new-launched worker_2. We set the QoS tar-
get to the time interval t3. As shown in Fig. 8, the Alone time-
line means that without the interference of new-launched
worker, worker_1 completes the computation at t0, which is
definitely shorter than t3. Within the Co-run timeline,
worker_1 runs independently from 0 to t0. At t0, worker_2 is
launched according to the elastic scheduling policy. From t0
to t1, worker_1 and worker_2 runs jointly on GPUs. At t1,
worker_1 completes computations, and worker_2 begins to
run independently. Finally, worker_2 completes computa-
tions at t4. To guarantee the QoS, both the elapsed time of
worker_1 and worker_2 should be shorter than the QoS target
t3, which is equivalent to Equation 2.

t2 < t3
t4 < t0 þ t3

�
: (2)

To simplify the resource sharing mechanism on GPUs,
we first conduct an experiment to characterize the perfor-
mance of deep learning models on GPUs. Here, we still use
the convolution operator to simulate the deep learning
models, which occupies the most of computation time. A
convolution operator with batch size ranging from 1 to 64 is
executed for 152 times in the experiment. The increase of
batch size indicates the increase in serving workload. And
two kinds of convolution algorithms are used -winograd [42]
and im2col [43]- which are mostly used in the SOTA deep
learning models. The latencies of the 64 cases are recorded
in Fig. 9. The x-axis represents the batch size used for exe-
cuting, and the y-axis represents the corresponding laten-
cies. As we can see, the latency of im2col grows linearly as
the batch size increases. While the latency of winograd
grows as a ”ladder”, the general growing trend is still linear.

Hence, for the qualitative analysis, we can assume that the
execution time of the worker can be obtained by W

u , where
W means the workload and u means the compute capacity
provided by GPUs.

During the execution, we divide the workload W of a
worker into multiple fractions according to the change of
compute capacity u. When multiple workers run jointly, the
workers share the total compute capacity u of the GPU.
Then we can get Equation 3. Here W0 and W 0

0 represent the
total workload of worker1 and worker2 . Respectively, W1,
W 0

1,W2, andW 0
2 represent the workload of the different peri-

ods, as shown in Fig. 8. u0 represents the total compute
capacity of the GPU. u1 and u2 represent the compute capac-
ity that worker1 and worker2 get during co-running. The
summation of u1 and u2 should be smaller than u.

W0 ¼W1 þW2

W 0
0 ¼W 0

1 þW 0
2

u05u1 þ u2

8<
: (3)

u05u1 þ u2
W1
u0
þ W2

u1
< t3

W 0
1

u2
þ W 0

2
u0

< t3

8>><
>>:

: (4)

Equation 4 can be obtained by combining Equation 2
and Equation 3. After some transformation, we conclude as
Equation 5. Only if Equation 5 is satisfied, the QoS can be
guaranteed. As we can see, u2 is restricted by the upper
limit and the lower limit to meet the QoS target of both
workers. Or said differently, elastic scheduling policy aims
to control the compute capacity of the new-launched worker
to guarantee the QoS.

u2 < u0 þ W2u0
W1�t3u0

u2 >
W 0

1
u0

t3u0�W 02

8<
: (5)

7.2 Naive Elastic Scheduling: N-Ebird

On instinct, the batch size is the main factor that influences
the compute capacity of an inference worker. A worker
with a larger batch size tends to have higher parallelism,
which means occupying more SMs when running jointly
with other workers. Therefore, in the naive elastic schedul-
ing policy, we control the total amount of current active
inference requests to improve the responsiveness and get a
higher throughput while guaranteeing the QoS, which is
the original design of Ebird.

N-Ebird ensures that the total amount of active requests
are smaller than a specific value at a coarse-grained level
regardless of controlling the amount of the inference

Fig. 8. Interaction of co-running batches.

Fig. 9. Performance scalability of deep learning operators.

1314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

workers. This specific value is considered to be the max
batch size (MaxBS) that can be used by an inference worker
while not violating the QoS, which is profiled offline. We
launch the new inference worker as long as the bath size
summation of older workers and the new-launched worker
is smaller than MaxBS. This simple thought is based on the
performance validation of the multi-granularity inference
engine in Section 6.3 and Equation 5. First N-Ebird avoids
an excessive total number of allowed workers in the infer-
ence engine in order not to degrade the performance when
compared with using a single inference worker of large
batch size. Also, the restriction on the number of active
requests prevents the system from violating the QoS caused
by GPU resource contention.

We discuss the detailed mechanism about N-Ebird in
combination with the scheduling model in Section 7.1. In N-
Ebird, we assume that each inference request shares the
GPU resource equally. Meanwhile, if the QoS target is set at
the latency when requests are processed in a batch of size
MaxBS, the batch size summation of worker_1 and worker_2
in Fig. 8 can not surpass MaxBS under the scheduling of N-
Ebird. Basing on the hypothesis of equal resource sharing,
worker_1 and worker_2 can get the compute capacity, which
depends on batch size. So the performance of the concurrent
worker_1 and worker_2 can be retained as that of a single
worker whose batch size equals to MaxBS, which means
Equation 5 is satisfied . Now that worker_1 is launched
ahead of worker_2 in fact, the QoS can be guaranteed.

7.2.1 Configuring Inference Engine

The configuration of the multi-granularity inference engine
under the scheduling of N-Ebird is as follows. Given themaxi-
mum allowed batch size s ¼ 32, we keep six models alive in
the inference engine, whose batch sizes are configured as the
list [1, 1, 2, 4, 8, 16]. This is based on the overall consideration
of three factors. First, each integer can be produced by the list
[1, 1, 2, 4, 8......]. Thus the inference engine is capable of accom-
modating the different loads. Second, with this configuration,
a worker of large batch size can be scheduled to better utilize
the parallelism of GPU under high load instead of using too
many workers with small batch size. Third, If the batch sizes
of all workers s are set to 1 to accommodate the different load,
the GPU global memory is overused, let alone the poor perfor-
mance of the inference engine.

7.2.2 Scheduling Algorithm

Algorithm 1 lists how the scheduler schedules the inference
requests in the memory pool to be processed by the workers
in the inference engine. The parameters used in the algo-
rithm are listed in Table 3. More specifically, alive in the table
means that the inferences are in the process of computation.

The scheduler runs as follows. First, when monitoring
the memory pool and inference engine, the scheduler
accesses the information about load (N), the beginning
device address (DevPtr) of input remaining to be sched-
uled, and the number of alive inferences (CurInf). Second,
the scheduler works out that if there are idle workers and
the maximum number of inferences that can be dispatched
to the inference engine by choosing the smaller one (R) of
N and ðMaxInf �CurInfÞ. Then the scheduler repeatedly

picks the first worker in the idle queue Q whose batch size
is not greater thanR untilR is less than 0 or no workers can
be picked. The scheduler switches the input address of the
chosen worker to DevPtr and wakes up the worker from
the idle queue Q. The scheduler also updates the idle queue
Q when workers finish processing inferences dispatched to
them.

Algorithm 1.Naive Elastic Batch Scheduling Algorithm

Require:N,DevPtr,Q,MaxInf ,CurInf
1: while True do
2: if !Q:emptyðÞ then
3: R minðN;MaxInf �CurInfÞ
4: Woker Q:frontðÞ
5: whileR > 0 andWorker do
6: ifR �Worker:batchsize then
7: ScheduleDevPtr!Worker:input
8: Worker:runðÞ
9: R R�Worker:batchszie
10: DevPtr DevPtrþWorker:batchsize
11: Q:removeðWorkerÞ
12: else
13: Worker Worker:nextðÞ

Fig. 10 shows an example of how the elastic batch sched-
uler coordinates the memory pool and the inference engine
work. represents the concatenated input data in the
memory pool. represents the busy worker which are
performing inference, while represents the idle worker.
Assume that at a certain time, input data of 12 inferences
are ready in the memory pool. A worker with batch size 8
has been scheduled to process the first 8 inferences, while
4 requests remain in the memory pool. The batch size of
the first worker in the idle queue is 4. At the next schedul-
ing, the scheduler pops the first worker out from the idle
queue and schedules this worker to process the remaining
4 requests. Later, when the worker of batch size 8 com-
pletes the inference, the scheduler puts the worker back
into the idle queue. Through such work style, the sched-
uler operates with the information from memory pool and
the inference engine. The batch size configuration varies in
real-time according to the load and GPUs operation status.
There is a balance between the memory pool and the infer-
ence engine.

In summary, at the time of scheduling, we have to
request a new idle worker of the multi-granularity infer-
ence engine to process the new batched requests. Because
of the red-black tree used to sort the idle workers in the
inference engine, the time complexity of requesting a new
idle worker from the idle queue is OðlogMÞ, where M is
the number of the alive workers in the multi-granularity
inference engine. And the time complexity of the rest steps
is Oð1Þ. Hence, the time complexity of the scheduling algo-
rithm is OðlogMÞ.

Fig. 10. Example of elastic batch scheduling.

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1315

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

7.3 Enhanced Elastic Scheduling: E-Ebird

N-Ebird works under the guideline of the hypothesis, equal
resource sharing. But resource contention of multiple work-
ers on GPUs is difficult to figure out only with a hypothesis.
Also, the configuration of the multi-granularity inference
engine is fixed due to the limitation of global memory in the
origin design of Ebird. After exploiting reusing memory
techniques, E2bird is able to hold more workers in the
multi-granularity inference engine. The configuration of the
inference engine is flexible and able to adjust to load. A new
question emerged: what is the best combination of workers in
the inference engine for a specific model under a specific load?
The deep learning models may require a specific batch size
to be executed more efficiently due to the architecture of
models and GPUs, which is neglected by N-Ebird.

Inspired by analysis of the elastic scheduling model in
Section 7.1, we investigate the factual interaction of co-run-
ning inference workers by experiments to gain the more
appropriate scheduling policy, E-Ebird. The work style of E-
Ebird includes two phases: the offline phase and the online
phase. In the offline phase, we profile all combinations of
worker configurations under different load (TotaolBS) and
those configurations with the best performance are recorded
for guiding the online scheduling. Then in the online phase,
the elastic batch scheduler will always use the best combina-
tion of workers for serving under different load, which has
been profiled in the offline phase.

7.3.1 Interaction of Co-Running Inference Workers

For a better understanding of the interaction among co-run-
ning inference workers, we profile the execution time per-
formance of the multi-granularity inference engine. The
configuration of each profiled inference engine is obtained
by Equation 6. In Equation 6, i represents the num of work-
ers with batch size ¼ 20, j represents the num of workers
with batch size ¼ 21,...n represents the num of workers with
batch size ¼ 25. Given TotalBS, the summation of all the
workers’ batch size, we profile the inference engines which
are configured with all the cases of ½i; j; k; l;m; n�. Inciden-
tally, we use the average latency of all workers in each case
to denote the execution time performance instead of tail
latency, which indicates better responsiveness.

TotalBS ¼ 20 � iþ 21 � jþ 22 � kþ 23 � lþ 24 � �mþ 25 � n:

(6)

Fig. 12 depicts the results of profiling inference engine
with Res152 when setting TotalBS at 32. Here, we only
select the 6 cases with the shortest latency and 2 cases with
the longest latency to make the results clear. In Fig. 12, each
line represents a case of the inference engine, the x-axis rep-
resents the binary logarithm of the worker batch sizeN , and
the y-axis represents the num of each kind of worker. The
legends in Fig. 12 represent the corresponding latencies. As
we can see, the execution time (85.3ms) of the inference
engine with the configuration ([0,0,0,2,1,0]) is the shortest.
Meanwhile, the latencies in many cases are shorter than that
(93:7ms) of the inference engine with a single worker whose
batch size equals TotalBS. On the contrary, in the two cases,
which consist of many workers whose batch size equals 1,
the average latency can be 4 � of the shortest one.

Two key points can be concluded from the above obser-
vations: �1 To a certain extent, multiple workers can achi-
eve better responsiveness and higher throughput than a
single worker;�2 Too many workers with small batch sizes
cause severe performance degradation, and the QoS target
is be violated. Thus, under a specific load, there exists a spe-
cific configuration of the inference engine, which is neither
a single worker with a large batch size nor too many work-
ers with small batch sizes. An offline profiling helps the
scheduler to seek it.

7.3.2 Offline Phase

Because the scheduler works under various loads, in the off-
line phase, E-Ebird profiles the performance of the inference
engine under different loads. As illustrated in Table 1,
workers with smaller batch sizes achieve better responsive-
ness but support lower throughput. Therefore, we set
TotalBS at ð4; 8; 16; 32Þ, to simulate the various loads. We
profiled all the models used in Section 8 for evaluation. The
results are shown in Fig. 11. In these sub-figures contained
in Fig. 11, the x-axis represents latency, the y-axis represents
the binary logarithm of worker batch size, and the z-axis
represents the num of each kind of worker.

After finishing profiling all the cases, E-Ebird selects the
best inference engine configuration for each load according
to the profiling results. All these configurations are saved as
the scheduling guidelines. Then E-Ebird initiates the infer-
ence engine with a configuration that can satisfy all selected
configurations. We still give an example of Res152, as
shown in Table 4. The inference engine with the configura-
tion ([1,1,1,2,1,0]) can satisfy all selected scheduling guide-
lines. It is worth noting that two workers of size 1 and size 2
are kept by default to support the extremely low load. There
is no need for profiling the cases of ðTotalBS ¼ 1; 2Þ.

Algorithm 2.Enhanced Elastic Batch Scheduling Algorithm

Require: N, DevPtr, Q, MaxInf , CurInf , MemState,
EngineConfs,CurConf
1: while True do
2: ifMemState changed then
3: UpdateCurConf from EngineConfs
4: UpdateQ accordingCurConf
5: if !Q:emptyðÞ then
6: R minðN;MaxInf �CurInfÞ
7: Woker Q:frontðÞ
8: whileR > 0 andWorker do
9: ifR �Worker:batchsize then
10: ScheduleDevPtr!Worker:input
11: Worker:runðÞ
12: R R�Worker:batchszie
13: DevPtr DevPtrþWorker:batchsize
14: Q:removeðWorkerÞ
15: else
16: Worker Worker:nextðÞ

7.3.3 Online Phase

In the online phase, E-Ebird works under the guidelines got
in the offline phase. Algorithm 2 lists how E-Ebird sched-
ules the inference requests.

1316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

The most parameters used in Algorithm 2 are the same as
that of N-Ebird, displayed in Table 3. Three new parameters
are introduced, including MemState, EngineConfs, and
CurConf . MemState represents the state of the memory
pool, EngineConfs represents the configurations saved in
the offline phase, and CurConf represents the current con-
figuration of the inference engine. E-Ebird checks the
MemState first before starting a new round of scheduling.
The MemState denotes the load by the total number of
pending requests in the GPU resident memory pool. If the
load changes, the scheduler updates the CurConf guided
by the EngineConfs. And then the scheduler updates the
queue of idle workers accordingly. The remaining steps run
as the same as theN-Ebird.

The extra steps for updating the configurations of the
multi-granularity inference engine augment the complexity
of scheduling policy. Upon changing the combination of alive
workers, the queue of idle workers has to be reconstructed

according to the batch size of workers, which is a process of
building a red-black tree. Thus, under the worst case, the time
complexity of the scheduling policy equals to OðMlogMÞ þ
OðlogMÞ ¼ OðMlogMÞ, where M is the number of the alive
workers in themulti-granularity inference engine.

8 EVALUATION

In this section, we first evaluate the effectiveness of E2bird
in improving the responsiveness and the throughput while
satisfying the QoS requirement of deep learning-based serv-
ices. We also dive into E2bird for inspecting the hardware
operating status and figure out the overhead of E2bird. The
two scheduling algorithms in E2bird are both evaluated.

8.1 Experiment Setup

We perform all the experiments on a machine equipped
with the latest Nvidia Titan RTX GPU. The GPU has 72 SMs
plus 576 Tensor cores and is able to deliver outstanding per-
formance for deep learning inferences [44]. Table 5 lists the

Fig. 11. Profiling results of all mdoels under various loads.

TABLE 4
Configuration of Inference Engine for Res152

TotalBS Configuration

4 [0,0,1,0,0,0]
8 [0,0,0,1,0,0]
16 [0,0,2,1,0,0]
32 [0,0,0,2,1,0]
Inference Engine [1,1,1,2,1,0]Fig. 12. Perfomance of multi-granularity inference engine for Resnet 50

with TotalBS ¼ 32.

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1317

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

detailed experimental setup. As shown in Table 5, we use
six widely-used deep neural networks as the online services
to evaluate E2bird. We compare E2bird with SOTA deep
learning serving system, TF-Serving, in the following of this
section. TF-Serving uses the OPT_Wait policy described in
Section 3 for all the benchmarks because it has been shown
to be able to provide better performance than NO_Wait pol-
icy and the static policy. That is, the maximum batch size is
set to 32, and the maximum waiting time is set to be an opti-
mized value for each benchmark.

8.2 Improving Responsiveness

In this experiment, we evaluate the effectiveness of E2bird in
improving the responsiveness of deep learning-based serv-
ices with the diurnal load pattern. To emulate the diurnal
load pattern, we launch 400 inference requests for every
benchmark, in which the first 150 inferences are launched at a
low rate, and the later 250 inferences are launched at a high
rate. The load is high if the latencies of the inferences are close
to the QoS target (200ms is used in this experiment) with TF-
serving.

Fig. 13 shows the end-to-end latencies of the inferences in
different benchmarks when the inferences are served with
TF-Serving, N-Ebird, and E-Ebird, respectively. As observed
from this figure, both N-Ebird, and E-Ebird can significantly
reduce the end-to-end latency of the inferences at both low
load and high load for all the benchmarks compared with
TF-Serving. When the load is low, N-Ebird reduces the
latency of the inferences ranging from 44.6 to 70.9 percent for
the benchmarks. When the load is high, N-Ebird reduces the
latency of the inferences ranging from 7.4 to 53.1 percent for
the benchmarks. Under low load, E-Ebird maintains a simi-
lar latency performance with N-Ebird, which indicates they
are all using workers with small batch sizes for serving.
Under high load, E-Ebird achieves better performance rang-
ing from 5 to 30 percent comparedwith N-Ebird.

The reason why the two algorithms can reduce the
latency of the inferences at low load is that they reduce the
unnecessary waiting time by the same strategy. Besides,
they can improve the responsiveness at high load because
they process inferences using multiple independent work-
ers in the multi-granularity inference engine. An inference
can be processed once there are free workers, and once a
worker completes its inferences, the inference results are
immediately returned to the users. On the contrary, even
though the waiting time of inferences is short at high load
with TF-Serving, the inference inputs and results are all
transferred together, which all result in latency increase.
Due to the delay of input transferring, the latencies of all
inferences increase by the input transferring time. Mean-
while, all inference results are returned after all the infer-
ences in the current batch complete. Because the processing
time of a large batch of inferences is long, early inferences in
a batch suffer from longer response latency with TF-Serving
compared with N-Ebird and E-Ebird. In addition, because
of the offline phase, E-Ebird adopts a better configuration of
the inference engine than N-Ebird. Under high load, multi-
ple workers of biggish batch sizes are activated in E-Ebird
instead of these workers whose batch size equal 1 or 2 in N-
Ebird, which avoids too many context switch and enables
E-Ebird to work better.

Moreover, TF-Serving results in QoS violation of the
inferences in Res101, when the load increases, which is
mainly because TF-Serving processes batches of inferences
sequentially. When the current load is low, the inferences
are organized into small batches. If the load increases dra-
matically, the inferences queue up even if the currently run-
ning batch is not able to fully utilize the GPU. The queuing
results in the long end-to-end latency of the inferences
when the load bursts. On the contrary, N-Ebird and E-Ebird
can process the bursty inferences if the current inferences
are not able to utilize the GPU fully. They can always guar-
antee the QoS of deep learning-based services no matter the
load is bursty or not.

8.3 Increasing Throughput While Guaranteeing
the QoS

In this subsection,we evaluate E2bird in increasing the through-
put of inference processingwhile guaranteeing theQoS.Weuse
stable load in this experiment to eliminate the impact of load
bursty on the latencies of the inferences.

Fig. 14 presents the achieved inference processing
throughput with TF-Serving, N-Ebird, and E-Ebird, while
the latencies of the inferences are shorter than the QoS

TABLE 5
Evaluation Specifications

CPU Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
GPU NVIDIA TITAN RTX (72 SMs, 576 Tensor Cores)
OS Ubuntu 16.04.5 LTS with kernel 4.15.0-51-generic

Software GPU Driver Version: 418.39
CUDA Version: 10.1; CUDNN Version: 7.5

Benchmarks Inceptionv4 (Incv4); Resnet_50 (Res50); Resnet_101
(Res101)
Resnet_152 (Res152); VGG_16 (VGG16); VGG_19
(VGG19)

Fig. 13. The end-to-end latencies of the inferences in different benchmarks with TF-Serving, N-Ebird, and E-Ebird.

1318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

target. As we can see from this figure, N-Ebird and E-Ebird
improve the inference throughput of all the benchmarks
compared with TF-Serving. On average, N-Ebird improves
the throughput by 34.4 percent compared with TF-Serving
and E-Ebird additionally improves the throughput by 9.9
percent compared with N-Ebird. In this way, given the same
peak load of a deep learning-based service, fewer GPUs are
needed to host the servicewith N-Ebird and E-Ebird.

The two algorithms in E2bird are able to improve the
throughputwhile guaranteeing theQoS because they overlap
data transfer and computation. N-Ebird, and E-Ebird elimi-
nate the long GPU idle time due to data transfer. On the con-
trary, the SMs of the GPU in TF-Serving are idle when the
input data/the inference result is transferred to/from the
GPU. E-Ebird achieves a higher utilization of GPU resources
thanN-Ebird, whichmainly benefits from offline profiling.

As shown in Fig. 14, the throughput improvements are
big for some benchmarks (e.g., Res101) but are relatively low
for other benchmarks (e.g., Res152). This is mainly because
the benchmarks have different data transfer-computation
ratios. The data transfer-computation ratio of Res101 is
higher than the corresponding ratio of Res152. The benefit of
overlapping data transfer and computation declines if the
data transfer takes a large percentage of an inference’s end-
to-end latency.

8.4 Diving Into E2bird

To better understand why E2bird performs better than TF-
Serving, Fig. 15 shows the execution trace of executing infer-
ences of Res152 with N-Ebird, and Fig. 16 shows that with
E-Ebird (Fig. 3 shows a similar trace with TF-Serving). In
these two Figures, “Worker-n” shows the worker’s kernel
execution for inference batches of size n, “Whole GPU”
shows all the kernel execution in all the workers on the
whole GPU.

Comparing Figs. 15 and 3, the inputs of inferences are
transferred to GPU separately in N-Ebird, while TF-Serving
transfers the input data of all the inferences in a batch
together. The separate data transfer is enabled by the GPU

resident memory pool that stores inputs of all the infer-
ences. In this way, the data transfers are distributed on the
execution timeline and do not interrupt the computation of
GPU. Because data transfer and computation overlap with
each other, the GPU is always processing kernels at high
load, as shown in Fig. 15 (Row “Whole GPU”).

As observed from Fig. 15, we can also find that the six
workers run in parallel, while the kernel execution timeline of
each worker is relatively sparser than that in Fig. 3. If the ker-
nel from one worker can occupy all SMs of the GPU, the ker-
nels from other workers are not executed until there are idle
SMs on the GPU. The kernel execution timeline of the worker
with the smaller batch size is also sparser than that of the
worker with a larger batch size, indicating that N-Ebird
intends to schedule a worker with the larger batch size within
the idle worker queue under high load. The data transfers
from the GPU to the main memory are also scattered on the
timeline, which are executed by each worker. It explains why
N-Ebird is able to reduce the end-to-end latency of inferences
at high load, as shown in Fig. 13.

Comparing Figs. 15 and 16, the workers that E-Ebird uses
are less than N-Ebird. Though E-Ebird owns many workers
of different batch sizes in it, E-Ebird always chooses the best
inferences engine configuration according to profiling
results under a specific load. As shown in Fig. 12, E-Ebird
only uses 3 workers whose batch sizes are (8,8,16) under the
high load. Under the same conditions of the time interval,
“Row Whole GPU” of E-Ebird is also denser than that of N-
Ebird, which indicates a higher utilization of E-Ebird. This
phenomenon also explains why E-Ebird achieves lower
latency under high load and supports a higher throughput.
The fixed inference engine configuration of N-Ebird causes
the performance decline.

8.5 Overhead of E2bird

The performance overhead of the memory pool and infer-
ence engine has been analyzed when validating their design
philosophy in Section 5.3 and Section 6.3. The rest overhead
of E2bird comes from the multi-granularity inference engine
owing to maintaining multiple inference workers.

Fig. 17 shows the global memory usage of TF-serving,
NM-Ebird, and E2bird. Here NM-Ebird represents the E2bird

Fig. 14. The inference processing throughput of the benchmarks with
TF-Serving, N-Ebird, and E-Ebird while guaranteeing the QoS.

Fig. 15. Snapshot of inference processing with N-Ebird.

Fig. 17. Global memory usage of TF-Serving, NM-Ebird, and E2bird.

Fig. 16. Snapshot of inference processing with E-Ebird.

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1319

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

without the static memory optimizations. As we can see, NM-
Ebird uses 15.2 percent more global memory space com-
pared with TF-Serving. NM-Ebird uses more global mem-
ory space because workers duplicate the global memory
used for storing the weight and intermediate results of the
deep learning network . Moreover, the extra global mem-
ory [45] needed by convolution is also duplicated. After
adopting optimizations, E2bird reduce the global memory
consumption dramatically. On average, E2bird now reduce
the global memory usage by 64.8 percent compared with
NM-Ebird and 59.4 percent compared with TF-Serving.

9 CONCLUSION

E2bird improves responsiveness and throughput for deploy-
ing deep learning services in datacenters outfitted with
GPUs. For these purposes, E2bird enables the GPU-side pre-
fetch mechanism and the elastic batch scheduling policy for
the deep learning serving system. As far as we know, E2bird
is the first GPU-side batching system for deep learning serv-
ing system on GPUs. Through comparing the performance
of E2bird and TF-Serving (State-of-the-art deep learning
serving system), we verify the effectiveness of E2bird in elim-
inating the waiting time for responsiveness and overlapping
data transfer and computation for GPUs when providing
deep learning services. Generally, E2bird enhances respon-
siveness. Moreover, E2bird improves the throughput by 47.4
percent on average compared with state-of-the-art solutions,
TF-Serving.

ACKNOWLEDGMENTS

This work was sponsored in part by the National R&D Pro-
gram of China (No. 2018YFB1004800) and in part by
National Natural Science Foundation of China (NSFC)
(62022057, 61632017, and 61832006).

REFERENCES

[1] Apple siri. Accessed: Mar. 20, 2020. [Online]. Available: https://
www.apple.com/siri/

[2] Google translate. Accessed: Mar. 20, 2020. [Online]. Available:
https://translate.google.com/

[3] Prisma. Accessed: Mar. 20, 2020. [Online]. Available: https://
prisma-ai.com/

[4] J. Schmidhuber, “Deep learning in neural networks: An over-
view,” Neural Netw., vol. 61, pp. 85–117, 2015.

[5] S. Han et al., “EIE: efficient inference engine on compressed deep
neural network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Com-
put. Archit., 2016, pp. 243–254.

[6] Big basin v2. Accessed: Mar. 20, 2020. [Online]. Available:
https://code.fb.com/ml-applications/the-next-step-in-facebook-s-
ai-ha rdware-infrastructure/

[7] M. Jeon, S. Venkataraman, J. Qian, A. Phanishayee, W. Xiao, and
F. Yang, “Multi-tenant GPU clusters for deep learning workloads:
Analysis and implications,” Microsoft Research, Tech. Rep., 2018.
[Online]. Available: https://www.microsoft.com/en

[8] C. Olston et al., “Tensorflow-serving: Flexible, high-performance
ml serving,” 2017, arXiv: 1712.06139.

[9] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez,
and I. Stoica, “Clipper: A low-latency online prediction serving
system,” in Proc. 14th USENIX Symp. Networked Syst. Des. Imple-
mentation, 2017, pp. 613–627.

[10] N. Corporation, “CUDA C/C++ streams and concurrency.”
Accessed: Mar. 20, 2020. [Online]. Available: https://developer.
download.nvidia.com/CUDA/trai-ning/StreamsAndConcur
rencyWebinar.pdf

[11] W. Cui et al., “Ebird: Elastic batch for improving responsiveness
and throughput of deep learning services,” in Proc. IEEE 37th Int.
Conf. Comput. Des., 2019, pp. 497–505.

[12] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS awareness
and increased utilization for non-preemptive accelerators in ware-
house scale computers,” ACM SIGPLAN Notices, vol. 51, no. 4,
pp. 681–696, 2016.

[13] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers,” ACM
SIGOPS Operating Syst. Rev., vol. 51, no. 2, pp. 17–32, 2017.

[14] B. Wu, X. Liu, X. Zhou, and C. Jiang, “FLEP: Enabling flexible and
efficient preemption on GPUs,” ACM SIGOPS Operating Syst.
Rev., vol. 51, no. 2, pp. 483–496, 2017.

[15] Multi-process service. Accessed: Mar. 20, 2020. [Online]. Avail-
able: https://docs.nvidia.com/deploy/mps/index.html

[16] Z. Wei et al., “Laius: Towards latency awareness and improved
utilization ofspatial multitasking accelerators in datacenters,” in
Proc. 33rd ACM Int. Conf. Supercomputing, 2019, pp. 58–68.

[17] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on GPUs,” in
Proc. 44th Annu. Int. Symp. Comput. Archit., 2017, pp. 269–281.

[18] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2009, pp. 163–174.

[19] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” 2018, arXiv : 1802.05799.

[20] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
caffe: Co-designing MPI runtimes and caffe for scalable deep
learning on modern GPU clusters,” in ACM Sigplan Notices, vol.
52, no. 8, 2017, pp. 193–205.

[21] H. Zhang et al., “Poseidon: A system architecture for efficient
GPU-based deep learning on multiple machines,” 2015,
arXiv :1512.06216.

[22] Z. Fang, T. Yu, O. J. Mengshoel, and R. K. Gupta, “QoS-aware
scheduling of heterogeneous servers for inference in deep neural
networks,” in Proc. ACM Conf. Inf. Knowl. Manage., 2017, pp. 2067–
2070.

[23] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
M. Erez, “Kelp: QoS for accelerated machine learning systems,” in
Proc. IEEE Int. Symp.High Perform. Comput. Archit., 2019, pp. 172–184.

[24] M. Abadi et al., “TensorFlow: A system for large-scale machine
learning,” in Proc. 12th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2016, pp. 265–283.

[25] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014,
pp. 675–678.

[26] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc.
31st Conf. Neural Inf. Process. Syst., 2017, pp. 1–4.

[27] H. Shen et al., “Nexus: A GPU cluster engine for accelerating
DNN-based video analysis,” in Proc. 27th ACM Symp. Operating
Syst. Princ., 2019, pp. 322–337.

[28] D. Crankshaw et al., “Inferline: Ml inference pipeline composition
framework,” 2018, arXiv: 1812.01776.

[29] M. Zaharia et al., “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[30] “Tensorflow serving batching guide,” 2019. [Online]. Available:
https://github.com/tensorflow/serving/tree/master/tensorflow_
serving/batching

[31] P. Gao, L. Yu, Y. Wu, and J. Li, “Low latency RNN inference with
cellular batching,” in Proc. 13th EuroSys Conf., 2018, Art. no. 31.

[32] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “DeepCPU: Serv-
ing RNN-based deep learning models 10x faster,” in Proc. USE-
NIX Annu. Techn. Conf., 2018, pp. 951–965.

[33] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, “GRNN:
Low-latency and scalable RNN inference on GPUs,” in Proc. 14th
EuroSys Conf., 2019, Art. no. 41.

[34] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
huffman coding,” 2015, arXiv :1510.00149.

[35] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN pruning to the underlying hardware
parallelism,” ACM SIGARCH Comput. Archit. News, vol. 45,
no. 2, pp. 548–560, 2017.

[36] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, “Low-bit
quantization of neural networks for efficient inference,” in Proc.
Int. Conf. Comput. Vis. Workshop, 2019, pp. 3009–3018.

1320 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

https://www.apple.com/siri/
https://www.apple.com/siri/
https://translate.google.com/
https://prisma-ai.com/
https://prisma-ai.com/
https://code.fb.com/ml-applications/the-next-step-in-facebook-s-ai-ha rdware-infrastructure/
https://code.fb.com/ml-applications/the-next-step-in-facebook-s-ai-ha rdware-infrastructure/
https://www.microsoft.com/en
https://developer.download.nvidia.com/CUDA/trai-ning/StreamsAndConcur rencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/trai-ning/StreamsAndConcur rencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/trai-ning/StreamsAndConcur rencyWebinar.pdf
https://docs.nvidia.com/deploy/mps/index.html
https://github.com/tensorflow/serving/tree/master/tensorflow_serving/batching
https://github.com/tensorflow/serving/tree/master/tensorflow_serving/batching

[37] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2849–2858.

[38] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on CPUs,” in Proc. Deep Learn. Unsupervised Fea-
ture Learn. Workshop, 2011, pp. 1–8.

[39] N. Corporation, “Profiler users guide,” [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[40] L. Wang et al., “Superneurons: Dynamic GPU memory manage-
ment for training deep neural networks,” in Proc. 23rd ACM SIG-
PLAN Symp. Princ. Practice Parallel Program., 2018, pp. 41–53.

[41] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets
with sublinear memory cost,” 2016, arXiv :1604.06174.

[42] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 4013–4021.

[43] K. Chellapilla, S. Puri, and P. Simard, “High performance
convolutional neural networks for document processing,” 2006.
[Online]. Available: https://hal.inria.fr/docs/00/11/26/31/
PDF/p1038112283956.pdf

[44] “Nvidia turing architecture whitepaper,” 2019. [Online]. Avail-
able: https://www.nvidia.com/content/dam/en-zz/Solutions/
design-visualizati on/technologies/turing-architecture/NVIDIA-
Turing-Architecture-Whitepaper.pdf

[45] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,”
2014, arXiv:1410.0759.

Weihao Cui received the BSc degree from
Shanghai Jiao Tong University, China. He is cur-
rently working toward the PhD degree in the field
of computer science under supervision of Dr.
Quan Chen with Department of Computer Engi-
neering Faculty of Shanghai Jiao Tong University,
China. His research interests include high perfor-
mance computing and resource management of
accelerators in datacenters.

Quan Chen received the PhD degree from the
Department of Computer Science and Engineer-
ing, Shanghai Jiao Tong University, China, in
June 2014. He is a tenure-track associate profes-
sor with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University,
China. His research interests include high perfor-
mance computing, task scheduling in various
architectures, resource management in datacen-
ter, runtime system, and operating system.

Han Zhao received the BSc degree from Shang-
hai Jiao Tong University, China. He is currently
working toward the PhD student in the field of
computer science under supervision of Dr. Quan
Chen, with Department of Computer Engineering
Faculty of Shanghai Jiao Tong University, China.
His research interests include high performance
computing and resource management of acceler-
ators in datacenters.

Mengze Wei received the BSc degree from
Shanghai Jiao Tong University, China. She is cur-
rently working toward the MSc degree in the field
of computer science under supervision of Dr.
Quan Chen, with Department of Computer Engi-
neering Faculty of Shanghai Jiao Tong University,
China. Her research interests include high perfor-
mance computing and resource management in
datacenter.

Xiaoxin Tang received the BS degree in computer science from the
South China University of Technology, China, in 2010, and the PhD
degree from the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, China. In the year of 2013 and 2014,
he was a visiting student with the Department of Computer Science,
University of Otago, New Zealand. Currently, he is a lecturer with the
Department of Computer Science, Shanghai University of Finance
and Economics, China. His research interests include heterogeneous
computing, parallel algorithms, blockchain, and financial computing.

Minyi Guo (Fellow, IEEE) received the PhD
degree in computer science from the University of
Tsukuba, Japan. He is currently Zhiyuan Chair
professor and the head of theDepartment of Com-
puter Science and Engineering, Shanghai Jiao
Tong University, China. His present research inter-
ests include parallel/distributed computing, com-
piler optimizations, embedded systems,
pervasive computing, big data, and cloud comput-
ing. He is currently on the editorial board of IEEE
Transactions on Parallel and Distributed Systems,

IEEE Transactions on Cloud Computing, and Journal of Parallel and Dis-
tributed Computing. He is a fellow of CCF.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CUI ETAL.: E2BIRD: ENHANCED ELASTIC BATCH FOR IMPROVING RESPONSIVENESS AND THROUGHPUTOF DEEP LEARNING SERVICES 1321

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:39:22 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://hal.inria.fr/docs/00/11/26/31/PDF/p1038112283956.pdf
https://hal.inria.fr/docs/00/11/26/31/PDF/p1038112283956.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualizati on/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualizati on/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualizati on/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

