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Abstract—GPUs have been widely adopted to serve online deep
learning-based services that have stringent QoS requirements.
However, emerging deep learning serving systems often result
in long latency, and low throughput of the inference request
that damage user experience and increase the number of GPUs
required to host an online service. Our investigation shows that
the poor batching operation and the lacking of data transfer-
computation overlap are the root causes of the long latency and
low throughput. To this end, we propose Ebird, a deep learning
serving system that is comprised of a GPU-resident memory
pool, a multi-granularity inference engine, and an elastic batch
scheduler. The memory pool eliminates the unnecessary waiting
of the batching operation and enables data transfer-computation
overlap. The inference engine enables concurrent execution of
different batches, improving the GPUs resource utilization. The
batch scheduler organizes inference requests elastically. Our
experimental results on an Nvidia Titan RTX GPU show that
Ebird reduces the response latency of inferences by up to 70.9%
and improves the throughput by up to 49.3% while guaranteeing
the QoS target compared with TensorFlow Serving.

Index Terms—GPUs, DL Serving, Latency, Throughput, Re-
sponsiveness

I. INTRODUCTION

Deep learning is famous for the high prediction accuracy

and has been adopted in many online services that require short

response time (e.g., intelligent personal assistant [1], online

translation [2], and interactive photo editor [3]). GPUs have

been proved to be particularly suitable for these computational

demanding deep learning-based services, especially after the

introduction of tensor cores in Nvidia Volta GV100 GPU

architecture for speeding up neural network processing. It has

been reported that GPUs can speed up the model training by

more than 50× CPU [4]. Due to the high computational ability

of GPUs, more and more service providers start to use GPUs

to host the deep learning-based services [5]–[7].

For deep learning-based services, multiple inference re-

quests are often organized and executed in batches, because

Quan Chen and Minyi Guo are corresponding authors.

a single inference cannot fully utilize all the resources of

a GPU (e.g., the latest Nvidia Titan RTX has 72 SMs).

Emerging deep learning serving systems, such as TensorFlow

Serving [8], adopt a CPU-side batching mechanism to improve

the inference processing throughput.
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Fig. 1: Execution timeline of batched inference requests.

Generally, in most deep learning serving systems adopting

CPU-side batching, inference requests are batched to gain

high parallelism, as shown in Figure 1. Batch operations of

input data are performed on the CPU side [8] [9] since the

input of a deep learning network running on GPUs must be

stored in a continuous address space. Then service providers

can configure the maximum batch size s and the maximum

waiting time t of an inference. Either the number of queued

inferences reaches s, or the earliest inference waits for t, the

queued inferences are organized to be a batch. When the last

inference of a batch arrives, the input data of all the inferences

are transferred to the GPU together. The GPU then processes

the batched inferences together in a tight-couple way. After

the processing completes, the results of all the inferences are

transferred to the CPU together. Moreover, only after a batch

of inferences returns, the next batch can be launched. This

mechanism works well if the load of the deep-learning-based

service is stable, and s and t are tuned carefully before the

service starts based on the inference load.

However, online services often experience diurnal load

pattern. Emerging batching mechanism results in long latency

at low load and low throughput at high load. At low load, the

response latency of the first inference in a batch is delayed
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by at least t (the processing time also increases due to the

batching). At high load, due to the sequential processing of

different batches, GPUs are idle when copying the result of

inferences from GPU to CPU, and copying the input data of

the inferences from CPU to GPU. The GPUs are not fully

utilized even if the requests queued up seriously at the CPU

side, resulting in the low throughput.

Eliminating unnecessary waiting at low load, and overlap-

ping data transfer and computation at high load can improve

the responsiveness and throughput of deep-learning-based ser-

vices. However, if a short maximum waiting time t is adopted

for eliminating the unnecessary waiting, each batch will have

only a small number of inferences. When the load of the

service bursts, the new inferences suffer from long latency.

This is mainly because these new inferences are not launched

to the GPU before the previous batch returns, even though the

GPU is not fully utilized by the small batch of interferences.

Configuring a short maximum waiting time of inference is not

helpful in reducing the latency of inferences in online services

(discussed in Section III).

The concurrent kernel execution feature [10] of the current

GPUs that allows independent kernels in different CUDA

streams1 to run concurrently on different SMs of a GPU can

be leveraged to solve the above problem. We observe that

processing multiple inferences in a single large batch using a

single CUDA stream has similar performance with processing

these inferences using multiple streams with smaller batches.

Therefore, if we can elastically launch multiple small batches

of inferences to the GPU when the load bursts, the GPU can

be better utilized even if the short maximum waiting time

is adopted. The elastic batching also enables data transfer-

computation overlap, thus improving the throughput.

Based on this observation, we propose Ebird, a novel

deep learning serving system to improve the responsive-

ness and throughput of online deep learning-based services.

Ebird is comprised of a GPU-resident memory pool, a multi-
granularity inference engine and an elastic batch scheduler.

The memory pool holds the input data of all the inferences.

Whenever an inference is submitted, its input data (and other

meta information) is directly transferred into the memory

pool. The memory pool enables data transfer-computation

overlap by transferring data in the backend when the GPU

is processing other inferences. The multi-granularity inference

engine provides multiple CUDA streams that process inference

batches of different granularities, thus enabling concurrent

kernel execution. The batch scheduler organizes the inferences

in the memory pool into batches of different granularities

elastically and schedules them to the appropriate workers in

the engine. In Ebird, an inference is processed as soon as

possible if there are available GPU resources to reduce the

response latency. Our main contributions are as follows.

• Comprehensive analysis of batch scheduling for deep
learning-based services on GPU. The analysis demon-

1A CUDA stream is a sequence of operations that execute in issued-order,
while operations issued to different CUDA streams execute in parallel.

strates that emerging batching policies result in long

latencies and low throughput of online services.

• A GPU-side inference batching mechanism. We im-

plement a novel GPU-side memory pool that stores the

inputs of all the inferences in the GPU global memory. It

enables transfer-computation overlap and elastic batching.

• A novel elastic batch scheduling policy. We design a

multi-granularity inference engine and a corresponding

batch scheduler that minimizes the response latency of

inferences while improving the throughput of services.

Our experimental results on an Nvidia Titan RTX GPU

show that Ebird reduces the response latency of inferences

by up to 70.9% and improves the throughput by up to 49.3%

while guaranteeing the QoS target compared with TensorFlow

Serving (hereinafter called the “TF-Serving”) running with

optimized scheduling setup.

II. RELATED WORKS

Researchers have made efforts to develop GPU-based deep

learning systems for particular purposes like better perfor-

mance [11]–[14] or QoS management [15], [16]. Some works

focus on the optimization in mainstream deep learning sys-

tems, including Tensorflow [17], Caffe [18], Pytorch [19], and

others. Generally, offering services in datacenters only needs

the forward computation of the whole deep learning model

training process, which is implemented but not optimized

for serving in the frameworks mentioned above. Although

the accuracy of the model evaluating, and performance of

training are two keys to deep learning research. The quality

of service(QoS) and utilization of the full serving system play

essential roles in providing deep learning services.

Systems for deep learning serving are developed according

to the difference of properties between training and serving.

Those systems such as Tensorflow Serving [8] and Clipper [9],

integrate the mainstream model training frameworks to provide

the inference engine. Thus they inherit performance problems

caused by training. Such systems manage QoS by protecting

the end-to-end tail latency with the batch size and waiting time

for a batch at high-level, which is a coarse-grained way. Some

works focus on specific deep learning models. BatchMaker

[20], DeepCPU [21], and GRNN [22] are specially designed

to improve inference speed for RNNs. These works are short

of generalization and are not able to figure out the existing

problems for all deep learning models.

Systems [15], [16], [23], [24] focusing on QoS management

are more generalized for QoS task running on GPUs, where

the end-to-end latency is controlled through API provided by

Nvidia. However, QoS management at the API fails to take the

deep learning serving properties into account. These works

take into account the co-location of user-facing applications

and batch applications on GPUs, which can be future work

for us.

III. BACKGROUND AND MOTIVATION

In this section, we investigate the problems of existing deep

learning serving systems for online services with diurnal load
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Fig. 2: The end-to-end latencies of the inferences with different

batching policies when the load of the service bursts.

pattern. Without loss of generality, we use TF-Serving as the

representative serving system and use Resnet 152 (Res152 in

short) that is widely used in image classification services as

the representative network to perform the investigation. To

emulate the pattern, we increase the submit frequency of the

inference requests for every 150 inferences.

A. Existing Problems

Figure 2 shows the end-to-end latencies of the inferences

when different batching policies are adopted in TF-Serving.

In the figure, the shadowed area shows the load variation

of Res152, the x-axis shows the arrival order of the infer-

ences, and the y-axis shows the latencies of the inferences.

“NO Wait” and “OPT Wait” represent the policies that set

the maximum waiting time of an inference request to 0 and

30ms, respectively. The optimal maximum waiting time is

identified according to the official guide of TF-Serving [25].

For all the policies, the maximum batch size is 32, that is

the recommended batch size for Res152 in many research

papers [9]. “Static” policy is similar to “OPT Wait”, except

the batch size is fixed to 32. If there are less than 32 valid

inferences in a batch, the batch is padded to have 32 inferences

with dummy inferences to better utilize the tensor cores in

GPU.

Observed from Figure 2, NO Wait achieves the shortest

latency when the load is low but suffers from long latency

at the high load that results in the Quality-of-Service (QoS)

violation. On the contrary, OPT Wait achieves much shorter

latency at high load but suffers from relative long latency

at low load. Meanwhile, the static policy always performs

worse than the OPT Wait policy. TF-Serving recommends the

service providers to adopt the OPT Wait batching policy.

To better understand how the batched inferences are pro-

cessed on a GPU, Figure 3 presents the trace of process-

ing inferences with the OPT Wait policy at high load. The

execution trace is captured with the official profiling tool

nvprof [26] provided by Nvidia. In the figure, “HtoD” and

“DtoH” represent the operations of copying data from main

memory to GPU and from GPU to main memory, respectively.

“Computation” represents the execution of the kernels.

Observed from Figure 3, the GPU is idle between adjacent

batches. This is mainly because TF-Serving schedules different

batches sequentially. Only after the result of the current batch

is transferred to the main memory, the input data of the next

batch can be transferred to GPU. The scheduling overhead

Fig. 3: Snapshot of inference processing with OPT Wait.

Inference processing with NO Wait is similar except the

kernels are shorter.

and the data transfer together result in the large idle gap.

This figure also explains the reason that the NO Wait policy

results in long latency at high load. If NO Wait is adopted, a

batch often has a small number of inferences and cannot fully

utilize the GPU. In this case, the inference requests queued

at the CPU side will not be launched until the previous batch

completes even if the GPU is not fully utilized. The resulted

long queueing time is the root cause of the long latency at

high load with the NO Wait policy.

According to the above investigation, emerging deep learn-
ing serving system results in the long latency of inferences
and the low processing throughput. The root causes of the

two problems are the long waiting time for batching, the low

GPU utilization due to the sequential processing of different

batches, and the lacking of transfer-computation overlap.

B. The Ways to Solve the Existing Problems

A deep learning serving system that maximizes the through-

put while satisfying the QoS target and minimizes the latency

of inferences at low load is required to cater to the diurnal load

pattern. We propose Ebird, an adaptive deep learning serving

system to achieve the above purpose. According to the above

analysis, Ebird should have the following abilities.

• Ebird should be able to overlap data transfer and
computation to minimize the GPU idle time between
adjacent batches. By keeping the SMs of a GPU busy,

more inferences can be processed at high load. However,

state-of-the-art systems have no input pipeline that can

deliver data for the next batch when the current batch

is being processed. Ebird needs to design a software

mechanism to overlap the transfer and computation.

• Ebird should be able to run multiple batches of
inferences concurrently. With this ability, when the load

of the service bursts, the new inferences can be executed

immediately if the GPU is not fully utilized.

• Ebird should be able to organize inferences into
batches of different granularities elastically. This abil-

ity minimizes the waiting time of inferences and improves

GPU utilization. When a GPU is processing a large

batch of inferences, a small batch of inferences can be

launched to utilize the remaining GPU resources and vice

versa. State-of-the-art systems (e.g., TF-Serving) fix the

maximum batch size during the lifetime of service.

IV. METHODOLOGY

In this section, we elaborate on the design overview of

Ebird.

Figure 4 shows the design overview of Ebird, a deep

learning serving system that is composed of a GPU resident
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Fig. 4: Overview of Ebird serving system.

memory pool, a multi-granularity inference engine, and an

elastic batch scheduler. The GPU resident memory pool keeps

inputs of inference requests one by one in sequence. It enables

data transfer-computation overlap. The multi-granularity infer-

ence engine maintains multiple workers that run and return

the result to the host independently and concurrently. The

workers are configured for inferences of different batch sizes.

The elastic batch scheduler organizes the inferences in the

memory pool into batches of different sizes elastically and

assigns them to a suitable worker, based on the workload and

the running states of the workers.

In more detail, when an inference request inf is submitted

to Ebird, it is served in the following steps.

1) Once Ebird receives inf, it is immediately offloaded to

the GPU by transferring the required information (e.g.,

input data, address of the return result, synchronization

flags) to the GPU resident memory pool (Section V).

The inference requests are sorted in the order of their

arrival time. The challenge here is how to manage the

inference requests from multiple users efficiently.

2) The elastic batch scheduler organizes the inferences in

the memory pool into batches based on the running

states of the workers in the multi-granularity inference

engine (Section VII). When multiple workers for infer-

ence batches of different sizes are free, it is challenging

to decide the way to batch the inferences so that their

response latencies can be minimized.

3) If inf is organized into an inference batch of size n,

it is scheduled to the free worker w for the inference

batch of size n. After the worker w completes the batch

of inferences, based on the return addresses of these

inferences stored in the memory pool, the inference

results are transferred to the main memory and returned

to users (Section VI).

V. GPU RESIDENT MEMORY POOL

In this section, we first discuss the design of the memory

pool in detail. Finally, we validate the reasonability of design-

ing the memory pool.

TABLE I: Parameters of slot in memory pool.

Parameters Explanation

index Serial ID of inference request

InDevPtr Device address of input

InEvent Input CUDA event

OutCpuPtr Host address of output

OutEvent Output CUDA event

Index
InDevPtr
InEvent
OutCpuPtr
OutEvent

Index
InDevPtr
InEvent
OutCpuPtr
OutEvent

Index
InDevPtr
InEvent
OutCpuPtr
OutEvent

InMutex; InStream; OutStream

Fig. 5: Structure of GPU resident memory pool.

A. Design of GPU Resident Memory Pool

Considering the disadvantages of traditional batching oper-

ations, we design a GPU resident memory pool to replace the

original batching operations on CPU.

The GPU resident memory pool acts as a circular buffer,

which holds input data of different inferences in sequence in

a continuous address of GPUs global memory. The memory

pool keeps allowing transferring individual request input from

CPU to GPU, instead of waiting until the last request in a batch

comes. The memory pool transfers the input data of different

requests serially in order of arrival. In this way, we can get

the mapping from input to output, and return inference result

to the corresponding request.

Figure 5 shows the structure of the memory pool. InMutex
guarantees that only one inference’s input is transferred at a

time. InStream and OutStream are two CUDA streams

that are responsible for communication between the memory

pool and the multi-granularity inference engine. Requests are

also responded through these two streams. Data in the memory

pool are organized in slots. Each slot mainly contains five

components, as listed in Table I. In order to transfer input data

for an inference, InStream calls cudaMemcpyAsync and

records the corresponding InEvent. Suppose that a worker

in the multi-granularity inference engine needs to process
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4 slots input data (index from 0 to 3). Since InEvents

of Slot 0 − 2 happen before InEvent of Slot3, this

worker only monitors the occurrence of InEvent of Slot3
to check whether all the four input data are already. When

the worker finishes the computation task, results are output to

the corresponding OutCpuPtr, and OutEvent is recorded

into OutStream. As OutEvent occurs, the memory pool

responds to the user. For efficient batching, the number of slots

in the memory pool is recommended to be several times of

MaxInf , which is the maximum number of alive inference

requests as described in Table II.

B. Benefits of GPU Resident Memory Pool

Thanks to the GPU resident memory pool, the waiting time

is excluded on the host, as the input data is transferred as soon

as the request arrives. Requests get concatenated one by one

automatically when entering the memory pool. No extra CPU

resources are needed to keep the batch queue. The batch size

is later determined by elastic batch scheduler.

The memory pool also brings benefits in terms of data

transfer-computation overlap. The GPU resident memory pool

acts as a buffer zone between the incoming requests and the

scheduler. After being received, a request waits for its turn to

get processed on GPU instead of queuing on the CPU. The

worker in the inference engine directly fetches the ready input

stored in the memory pool instead of waiting for data transfer.

C. Validating Reasonability

Fig. 6: Latency of split Memcpy and computation.

Despite theoretical benefits, there may be a doubt in the

effectiveness of the GPU resident memory pool. Typically,

transferring a single large file between disk and memory is

faster than transferring multiple small files with the same total

volume. Similarly, it is also possible that individual input data

transfer through PCI-e declines performance.

To validate the reasonability of the memory pool, we

conduct a simple experiment, in which 256 pictures are copied

from CPU to GPU through PCI-e to simulate data transferring.

A total of 256 pictures are divided into N fragments, where

N may equal to 1, 2, 4, 8, 16, ......256. The recorded elapsed

time of transferring 256 pictures with different N is shown

in Figure 6. The x-axis represents the binary logarithm of the

number N . The right y-axis represents the latency of memory

operations for transferring 256 pictures.

As we can see, splitting data movement into small batches

has similar performance to data movement in a large batch.

The latency of transferring a large piece of data and multiple

pieces of data with the same total size through PCI-e are al-

most equivalent. The maximum difference of latency between

with and without data splitting is lower than one millisecond

(3.9 microseconds for each request), which is negligible.

Overall, our design philosophy of the memory pool is

supported by this experiment.

VI. MULTI-GRANULARITY INFERENCE ENGINE

In this section, we exploit the multi-granularity inference

engine to enable multiple batches of inferences to run con-

currently. We also validate the performance of the inference

engine and discuss the configuration of multiple workers.

A. Enabling Concurrent Multiple Batches

The multi-granularity inference engine is aimed at adapting

to bursty load. Multiple workers are kept alive simultaneously

in the inference engine. Each worker can be configured with

different batch sizes and run independently since they are

bound to different CUDA streams. Therefore, the inference

engine is capable of launching multiple workers to process

the inferences according to the load. The batch size summation

of all the busy workers increases in real time when the load

raises.

The idle workers reside in a priority queue called idle queue,

which is regularly updated by the scheduler introduced in

Section VII. To cooperate with the scheduling policy, the

workers in the idle queue are sorted in descending order

according to its batch size by using a red-black tree. Each

worker is responsible for processing the batched requests and

returning the result of the inference to the host side. After

finishing processing, the worker enters the idle queue.

B. Performance Validation

There is also a doubt in the performance of the multi-

granularity inference engine. For instance, provided that the

latency of running two workers of batch size 4 concurrently is

much longer than one worker of batch size 8, there is a great

possibility that the inference engine leads to QoS violation

when running multiple workers to support a high load.

We conduct another simple experiment to validate the

inference engine performance. In the experiment, the CUDNN

convolution function, which is the most compute-intensive

function in deep learning networks, is called repeatedly for 50

times to simulate inference of a deep learning network, what

we call FakeNet. Assuming that 256 inferences of FakeNet
are remaining to be processed, we complete all the inferences

with N workers of batch size M , where N ∗M = 256 and N
varies according to the list(1, 2, 4, 8, .....256). The elapsed time

of each possibility is shown in Figure 6. The x-axis represents

the binary logarithm of the number N , while the left y-axis

represents the latency of the inferences of FakeNet.
As shown in Figure 6, with the same amount of inferences,

the computation latency of using one worker with single large

batch size and using multiple workers with multiple small

batch sizes are almost the same as long as we manage the
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workers carefully. The computation latency maintains stable

between 1 and 26 = 64, while increases when the computation

is divided into 27 = 128 and 28 = 256. This is because Titan

RTX has 72 SMs, indicating that at most 72 CUDA warps can

be executed at the same time. When more than 72 streams

are in use concurrently, latency may increase owing to low

utilization of each SM and serialization of different streams.

The experiment results show that the performance of the

inference engine can get guaranteed as long as its configuration

is carefully managed.

C. Configuration of Multiple Workers

Considering the experiment results above and the demand

of the elastic batch scheduling policy, the batch size of alive

models in the inference engine all coincide to 2n, where

n is a non-negative integer. Currently, given the maximum

allowed batch size s = 32, we keep six models alive in the

inference engine, whose batch sizes are configured as the list

(1, 1, 2, 4, 8, 16). This is based on the overall consideration of

three factors. First, each integer can be produced by the list

(1, 1, 2, 4, 8......). Thus the inference engine is capable to ac-

commodate the different load. Second, with this configuration,

a worker of large batch size can be scheduled to better utilize

the parallelism of GPU under high load instead of using too

many workers with small batch size. Third, If the batch size of

all workers s are set to 1 to accommodate the different load,

then the GPU global memory will be used up, even on the

Titan RTX which has a large global memory of 24GB.

VII. ELASTIC BATCH SCHEDULER

In this section, we introduce the elastic batch scheduler,

which improves responsiveness and throughput by coordinat-

ing the memory pool and inference engine.

Algorithm 1 lists how the scheduler schedules the inference

requests in the memory pool to be processed by the workers in

the inference engine. The parameters used in the algorithm are

listed in Table II. More specifically, alive in the table means

that the inferences are in the process of computation.

TABLE II: Parameters of elastic batch scheduling algorithm.

Parameters Explanation

DevPtr Device address where input data begins

N Number of ready input in memory pool

Q Queue of idle workers

MaxInf Maximum inferences allowed alive

CurInf Number of alive inferences

The scheduler runs as follows. Firstly, when monitoring the

memory pool and inference engine, the scheduler accesses

the information about load (N), the beginning device address

(DevPtr) of input remaining to be scheduled, and the number

of alive inferences (CurInf ). Secondly, the scheduler works

out that if there are idle workers and the maximum number of

inferences that can be dispatched to the inference engine by

choosing the smaller one (R) of N and (MaxInf−CurInf).
Then the scheduler repeatedly picks the first worker in the idle

queue Q whose batch size is not greater than R until R is less

than 0 or no workers can be picked. The scheduler switches the

input address of the chosen worker to DevPtr and wakes up

the worker from the idle queue Q. The scheduler also updates

the idle queue Q when workers finish processing inferences

dispatched to them. The time complexity of the scheduling

algorithm is O(logM), where M is the number of the alive

workers in the multi-granularity inference engine.

Algorithm 1 Elastic batch scheduling algorithm.

Require: N, DevPtr, Q, MaxInf , CurInf
1: while True do
2: if !Q.empty() then
3: R← min(N,MaxInf −CurInf)
4: Woker← Q.front()
5: while R > 0 and Worker do
6: if R ≥Worker.batchsize then
7: Schedule DevPtr→Worker.input
8: Worker.run()
9: R← R−Worker.batchszie

10: DevPtr ← DevPtr +Worker.batchsize
11: Q.remove(Worker)
12: else
13: Worker←Worker.next()

8 4
Input

Pop out

2 1 1
Idle Queue

8

4

Input

2 1 1
Idle Queue

8 4
Enter

2 1 1

Output

Idle Queue

Input
Idle Worker
Busy Worker

Fig. 7: Example of elastic batch scheduling.

Figure 7 shows an example of how the elastic batch

scheduler coordinates the memory pool and the inference

engine work. represent concatenated input data in the

memory pool. represent busy worker which are performing

inference, while represent idle worker. Assume that at a

certain time, input data of 12 inferences are ready in the

memory pool. A worker with batch size 8 has been scheduled

to process the first 8 inferences, while 4 requests remain in

the memory pool. The batch size of the first worker in the idle

queue is 4. At the next scheduling, the scheduler pops the first

worker out from the idle queue and schedules this worker to

process the remaining 4 requests. Later, when the worker of

batch size 8 completes the inference, the scheduler puts the

worker back into the idle queue.

Through such work style, the scheduler operates with the

information from memory pool and the inference engine.

The batch size configuration varies in real-time according to

the load and the GPUs operation status. There is a balance

between the memory pool and the inference engine.

VIII. EVALUATION

In this section, we evaluate the effectiveness of Ebird in im-

proving the responsiveness and the throughput while satisfying

the QoS requirement of deep learning-based services.
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Fig. 8: The end-to-end latencies of the inferences in different benchmarks with TF-Serving and Ebird.

A. Experiment Setup

We perform all the experiments on a machine equipped with

the latest Nvidia Titan RTX GPU. The GPU has 72 SMs and

576 Tensor cores, and has been shown to be able to deliver

outstanding performance for deep learning inferences [27].

Table III lists the detailed experimental setup.

As shown in Table III, we use six widely-used deep neu-

ral networks as the online services to evaluate Ebird. Note

that, Ebird does not rely on any specific features of these

benchmarks, thus is suitable for other deep learning-based

services. We compare Ebird with state-of-the-art deep learning

serving system, TF-Serving, in the following of this section.

TF-Serving uses the OPT Wait policy described in Section III

for all the benchmarks because it has been shown to be able

to provide better performance than NO Wait policy and the

static policy. That is, the maximum batch size is set to 32, and

the maximum waiting time is set to be an optimized value for

each benchmark.

TABLE III: Evaluation specifications.

CPU Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

GPU NVIDIA TITAN RTX (72 SMs, 576 Tensor Cores)

OS Ubuntu 16.04.5 LTS with kernel 4.15.0-51-generic

Software
GPU Driver Version: 418.39

CUDA Version: 10.1; CUDNN Version: 7.5

Benchmarks
Inceptionv4 (Incv4); Resnet 50 (Res50); Resnet 101 (Res101)

Resnet 152 (Res152); VGG 16 (VGG16); VGG 19 (VGG19)

B. Improving Responsiveness

In this experiment, we evaluate the effectiveness of Ebird in

improving the responsiveness of deep learning-based services

with diurnal load pattern. To emulate the diurnal load pattern,

we launch 400 inference requests for every benchmark, in

which the first 150 inferences are launched in the low rate,

and the later 250 inferences are launched in the high rate. The

load is high if the latencies of the inferences are close to the

QoS target (200ms is used in this experiment) with TF-serving.

Figure 8 shows the end-to-end latencies of the inferences

in different benchmarks when the inferences are served with

TF-Serving and Ebird, respectively. Observed from this fig-

ure, Ebird can significantly reduce the end-to-end latency of

the inferences at both low load and high load for all the

benchmarks compared with TF-Serving. When the load is low,

Ebird reduces the latency of the inferences ranging from 44.6%

to 70.9% for the benchmarks. When the load is high, Ebird

reduces the latency of the inferences ranging from 7.4% to

53.1% for the benchmarks.

The reason why Ebird can reduce the latency of the infer-

ences at low load is that it reduces the unnecessary waiting

time. Besides, Ebird is able to improve the responsiveness

at high load because it processes inferences using multiple

independent workers in the multi-granularity inference engine.

An inference can be processed once there are free workers,

and once a worker completes its inferences, the inference

results are immediately returned to the users. On the contrary,

even though the waiting time of inferences is short at high

load with TF-Serving, the inference results are returned after

all the inferences in the current batch complete. Because the

processing time of a large batch of inferences is long, early

inferences in a batch suffer from longer response latency with

TF-Serving compared with Ebird.

Moreover, TF-Serving results in QoS violation of the infer-

ences in Res101, when the load increases. This is mainly be-

cause TF-Serving processes batches of inferences sequentially.

When the current load is low, the inferences are organized into

small batches. If the load increases dramatically, the inferences

queue up even if the currently running batch is not able to

fully utilize the GPU. The queuing results in the long end-

to-end latency of the inferences when the load bursts. On the

contrary, Ebird is able to process the bursty inferences if the

current inferences are not able to fully utilize the GPU. Ebird

can always guarantee the QoS of deep learning-based services

no matter the load is bursty or not.

C. Increasing Throughput while Guaranteeing the QoS

In this subsection, we evaluate Ebird in increasing the

throughput of inference processing while guaranteeing the

QoS. We use stable load in this experiment to eliminate the

impact of load bursty on the latencies of the inferences.

Figure 9 presents the achieved inference processing through-

put with TF-Serving and Ebird while the latencies of the

inferences are shorter than the QoS target. As we can see

from this figure, Ebird improves the inference throughput of

all the benchmarks compared with TF-Serving. On average,

Ebird improves the throughput by 34.4% compared with TF-

Serving. In this way, given the same peak load of a deep

learning-based service, fewer GPUs are needed to host the

service with Ebird.
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Fig. 9: The inference processing throughput of the benchmarks

with TF-Serving and Ebird while guaranteeing the QoS.

Ebird is able to improve the throughput while guaranteeing

the QoS because it overlaps data transfer and computation.

On the contrary, the SMs in the GPU are idle when the input

data/the inference result is transferred to/from the GPU. Ob-

served from Figure 9, the throughput improvements are high

for some benchmarks (e.g., Res101) but are relatively low for

other benchmarks (e.g., Res152). This is mainly because the

benchmarks have different data transfer-computation ratios.

The data transfer-computation ratio of Res101 is higher than

the corresponding ratio of Res152. If the time of data transfer

takes a large percentage of an inference’s end-to-end latency,

overlapping data transfer and computation eliminates the long

GPU idle time due to data transfer.

D. Diving into Ebird

To better understand why Ebird performs better than TF-

Serving, Figure 10 shows the execution trace of executing

inferences of Res152 with Ebird (Figure 3 shows a similar

trace with TF-Serving). In Figure 10, “Worker-n” shows the

kernel execution in the worker for inference batches of size

n, “Whole GPU” shows all the kernel execution in all the

workers on the whole GPU.

Fig. 10: Snapshot of inference processing with Ebird.

Comparing Figure 10 and Figure 3, the inputs of inferences

are transferred to GPU separately in Ebird, while TF-Serving

transfers the input data of all the inferences in a batch together.

The separate data transfer is enabled by the GPU resident

memory pool that stores inputs of all the inferences. In this

way, the data transfers are distributed on the execution timeline

and do not interrupt the computation of GPU. Because data

transfer and computation overlap with each other, the GPU is

always processing kernels at high load, as shown in Figure 10

(Row “Whole GPU”).

Observed from Figure 10, we can also find that the six

workers run in parallel, while the kernel execution timeline

of each worker is relatively sparser than that in Figure 3. If

the kernel from one worker can occupy all SMs of the GPU,

the kernels from other workers are not executed until there are

idle SMs on the GPU. The kernel execution timeline of worker

with the smaller batch size is also sparser than that of worker

with larger batch size, indicating that the idle worker queue

intends to schedule a worker with larger batch size under high

load. The data transfers from the GPU to the main memory

are also scattered on the timeline, which are executed by each

worker. It explains why Ebird is able to reduce the end-to-end

latency of inferences at high load, as shown in Figure 8.

E. Overhead of Ebird

Fig. 11: Global memory usage of TF-Serving and Ebird.

The overhead of Ebird comes from the multi-granularity

inference engine owing to maintaining multiple inference

workers. Figure 11 shows the global memory usage of TF-

serving and Ebird. As we can see, Ebird uses 15.2% more

global memory space compared with TF-Serving. Ebird uses

more global memory space because workers duplicate the

global memory used for storing the weight of deep learning

network in our current implementation. Moreover, the extra

global memory [28] needed by convolution is also duplicated.

It can be relieved by sharing weight between workers because

there is no need to update the weight when performing

inferences.

IX. CONCLUSION

Ebird improves responsiveness and throughput for deploy-

ing deep learning services in datacenters outfitted with GPUs.

For these purposes, Ebird enables the GPU-side prefetch

mechanism and the elastic batch scheduling policy for the deep

learning serving system. Through comparing the performance

of Ebird and TF-Serving (State-of-the-art deep learning serv-

ing system), we verify the effectiveness of Ebird in eliminating

the waiting time for responsiveness and overlapping data

transfer and computation for GPUs when providing deep

learning services. Generally, Ebird enhances responsiveness.

Moreover, Ebird improves the throughput by 34.4% on average

compared with state-of-the-art solutions, TF-Serving. In the

future, we will implement the weight sharing mechanism to

reduce global memory usage overhead.
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