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ABSTRACT

In emerging DNN serving systems, queries are usually batched to
fully leverage hardware resources, and all the queries in a batch run
through the complete model and return at the same time. According
to our findings, some queries only need to pass through a portion
of the DNN model to attain sufficient precision in a DNN service.
These queries can have shorter latencies if they can return early in
the middle of a model. Therefore, we propose precision-aware multi-
exit inference serving, PAME, to achieve the above purpose. PAME
provides a holistic scheme to build a multi-exit DNN model and a
corresponding system-level design of the inference engine. We use
representative CV and NLP benchmarks to evaluate PAME. PAME
is adaptive to various DNN tasks and service loads. Experimental
results show that PAME reduces 39.9% average latency without
increasing the tail latency, while maintaining 99.68% precision of
the original single-exit DNN models on average.
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1 INTRODUCTION

Modern intelligent user-facing services, such as online image recog-
nition [1, 42], online translation [2, 3], often adopt Deep Neural Net-
works (DNNs) as the backend to satisfy the high requirements on
the accurate inference. When a large number of users may submit in-
ference requests concurrently, the inferences are often processed in
batches on high-performance accelerators (e.g., GPUs) [6, 16, 18, 42].
The inferences are batched because a single inference query cannot
fully utilize the hardware. The batching mechanism significantly
increases the supported load of the accelerator.

Current accelerators and DNN serving systems treat all the in-
ference queries equally, and all the queries in a batch return si-
multaneously. In general, a complete and complex DNN model is
often trained for a user-facing service to handle the most complex
queries. However, different efforts are required for the inference
queries to achieve sufficient precision, as these inference queries
often have different inputs [26, 28, 52]. Complex DNN models are
often wasteful for simple and canonical queries. Some queries can
achieve sufficient precision by running only a part of the complex
DNN model and exiting early [30, 32]. There is the opportunity to
reduce the response latency of inference queries by allowing some
of the queries in a batch to exit earlier.

It is nontrivial to take the above opportunity due to the complex
structures of DNN models. In general, a DNN model has two main
components: the backbone, and the functional head. The backbone
(e.g., ResNets [27] for computer vision tasks and BERT [21] for
natural language processing tasks) provides representative features,
and the head generates the final results based on the features from
the backbone. An inference query is not able to exit in the middle
of the backbone without going through the head. It is also not
applicable to directly “jump” from the middle of the backbone to
the head, as the structures of the intermediate features (e.g., the
dimensions of the features) from the middle of the backbone may
not be compatible with the requirements of the head.

Based on the above analysis, Figure 1 shows the design principle
of a DNN serving system that allows some queries in a batch to
exit earlier. In general, the inference queries form a batch, enter the
backbone together, and may exit from different exits. At each exit,
a bridge structure is added to transform the intermediate features
into the required form of the head. Besides, a head structure and
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Figure 1: The principle of a multi-exit DNN serving system.

a exit check structure are required at each exit. The head structure
calculates the output of each query, and the exit check structure
determines whether an query can exit. Generally, the entire serving
system acts like a multi-exit pipe; the exit check structures act like
valves and determine the exit ratio of the samples.

In practice, designing a multi-exit batch inference system fol-
lowing the above principle faces three key challenges: 1) How to
design the exits, as the features at different exits do not have iden-
tical structures, thus effort has to be paid to transform them into
acceptable structures. 2) Where to attach the exits, as many exits
can be attached on the DNN models but not all can provide satis-
fying performance. 3) The added exits increase the latency of the
inference queries that do not exit early. Too many exits bring heavy
latency overhead.

Exit Structure: With each exit demonstrating a fully functional
network route, all exits should contain task-specific heads in order
to obtain final results. Besides, the structures of the possible bridge,
the head, and the exit check at each early exit need dedicated design.
In order to attach applicable exits on the original pipe, we also have
to promise the precisions of early exits to be comparable with
the original single exit. Thus, the parameters of exits have to be
redistributed through special training schemes and the opening of
valves also requires meticulous design.

Exit Placement: The architectural design space for a multi-exit
network has numerous configuration parameters, among which the
exit position and the number of exits determine where to place exits.
It is computationally challenging to find out the optimal network
architecture because the complexity of the search space is huge.

Exit Overhead: When inferences are executed in a batch, the
additional computation of exits may bring overhead and extend
the latency of inferences that do not exit early. To decide where
a sample should exit, fetching and analyzing intermediate results
is inevitable. Such additional computation separates the complete
inference process into several stages, breaks the possible original
graph optimizations [9, 14, 19], requires extra kernel invocations
and data movement.

The added exits should not increase the latency of the inference
queries that exit normally, in other words, the tail latency of queries
within a batch. In this case, the exit overhead directly affects the
selection of exit structure and exit placement. There are some prior
algorithm works on adding multiple exits on a DNN model for
efficient inference [11, 29, 30, 49, 54]. The precision-latency trade-
off is also discussed in [33, 34, 43]. However, there is a lack of
consideration of the multi-exit design in batch inference scenarios.
With current batching mechanisms, even if a sample can achieve the
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required precision early as designed in prior work, it must return

simultaneously with other inferences in a batch.

To this end, we propose PAME, a scheme to build up a multi-exit
batch inference system. The optimized multi-exit network seeks
to minimize the inference latency without degrading the inference
precision. To add an exit, PAME imitates the structure of the back-
bone to construct the bridges, applies a customized training scheme
to redistribute the parameters in heads and applies a rule-based exit
check method which can be applied widely to various DNN tasks
(Section 5). To identify the appropriate place to attach the exits,
PAME organizes a rehearsal with collected real query samples for
profiling the performances of different configurations (Section 6).

The main contributions of this paper are as follows:

o A holistic mechanism to attach multiple exits on a DNN model
and corresponding exit policies. The design promises the multi-
exit model’s precision to rival the original DNN model’s precision.

e A runtime precision-aware multi-exit DNN serving system that
executes batched inferences while allowing inferences to exit
asynchronously. The design takes the opportunity of reducing
latency for the queries with easy inputs.

e A method of determining the to-be-used exits and adapting to
load changes based on input patterns. With the method, the tail
latency of a batch is not increased, even if the newly added exits
bring overhead.

We implement PAME with TensorRT [9]. Our experimental re-
sults on an Nvidia V100 GPU show that PAME reduces 39.9% latency
of the benchmarks on average while preserving 99.68% precision.

2 RELATED WORK

In this section, we discuss the algorithm work on developing ef-
ficient multi-exit DNNs, and the system work on improving the
batching policy during DNN inference.

2.1 Multi-exit DNN Models

Many algorithm works have proposed multi-exit DNN architectures
for efficient inference. The principles followed for attaching exits
and the principles for selecting samples to exit are two bases for
multi-exit model inference in existing work.

The principles of attaching exits vary. The mechanisms in [25,
37, 49, 54] directly place exits after each block of the transformer
model, assuming the overhead of exits is small. In [12, 22, 29, 30, 43],
the placement of exits is hand-crafted and depends on the model
architecture. Considering the overhead exits may bring, the mech-
anisms in [23, 33] use computational budget (e.g., the number of
FLOPs) and HAPI [34] uses latency budget to decide where to at-
tach exits to balance the accuracy/computation trade-off. Although
these works achieve significant computation or latency reduction,
they are not feasible when queries are organized in batches. To the
best of our knowledge, PAME is the first work that realizes and
illustrates the superiority of multi-exit in practical batch inference
scenarios.

The principles for selecting samples to exit can be categorized
into learnable exit policies and rule-based exit policies. Learnable
exit policies require hand-crafted and trainable networks to decide
whether a query can exit [31, 46, 47], while rule-based exit policies
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only check the prediction confidence at each exit to make the de-
cision. With most existing works focusing on classification tasks
and sporadically on other tasks (e.g., semantic segmentation [33]),
the potential of rule-based exit policies has not been fully exploited.
PAME provides a holistic methodology and implementation of rule-
based exit policies for various tasks.

2.2 Batching Policies for Queries

Many works have suggested using the batching approach to im-
prove the DNN serving system. Clipper [16] and Tensorflow Serv-
ing [42] use a batching method to group inferences received at
the same time into a single batch and process them all at once.
Triton [6] and Ebird [17] improve the batch-based approach by en-
abling concurrent execution of multiple DNNs. While these studies
do not concern the intrinsic properties of DNNs, they do provide
us with the potential to lower latency.

There are also other researches looking into how to improve
batch inference using the information of network architecture.
Padding is required to batch the inferences because RNN-based
models accept input with varying sequence lengths. Cavs [50],
Dynet [40], TensorFlow Fold [39], and BatchMaker [24] all aim to
reduce the latency for RNN-based models owing to padding. These
researches are orthogonal to PAME since they do not perceive the
precision information to minimize the latency.

3 MOTIVATION

In this section, we illustrate the opportunity of reducing latency of
DNN inferences through early exiting, and analyze the challenges
in taking the opportunity.

3.1 Opportunity of Early Exits

In this subsection, we perform experiments to show the inference
precision of various benchmarks when the queries exit early, from
the middle of DNN backbones. Except for the common classification
tasks, we explore more complex tasks such as pose estimation and
semantic segmentation. The precision metric is the mloU (Mean
Intersection over Union) for the semantic segmentation task and the
prediction accuracy for other tasks. The details of the tasks, their
corresponding backbones, heads and loads are listed in Section 7.1.

Popular DNN backbones (e.g., ResNet [27] and BERT [21]) often
comprise identical structures (referred to be blocks in this paper) to
compress and optimize features. Residual blocks in ResNet series
and the hidden layers in the encoder of transformer series are
such blocks. There are {3, 4, 23, 4} repetitive blocks for four regions
separately in ResNet101 [27] and 12 repetitive blocks in BERT-
base [21]. In the experiments, we attach exits at the end of each
block in the backbones, we train the exits as we will discuss in
Section 5.2 and we measure the inference precision at different
exits as shown in Figure 2.

In the figure, the horizontal lines show the inference precision of
the original DNN models, and the x-axis shows the exit position. As
observed, the precision of some early exits is close to the original
precision. For instance, if the exit after the 6-th block is adopted for
SST-2, the precision can reach 98% of the final exit’s precision but
the computation is halved. We can also observe that, for Cityscapes,
the precision is even 3% higher than the original precision if the
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Figure 3: Comparison of MACs (Multiply-Accumulate Oper-
ations) between backbones and heads.

queries exit earlier after the 28-th block. In this case, using only part
of the whole model is more efficient and can also achieve satisfying
results.

Considering the precision, it is feasible to allow some inference
queries in a batch to exit earlier.

3.2 Challenges of Adding Exits

It is nontrivial to add multiple exits into a DNN model for batch in-
ference for several reasons. First, as shown in Figure 1, it is challeng-
ing to design the exit check structure for each exit, as the structure
needs to quickly determine whether each inference query within a
batch can return. The exit check structures vary for different tasks.
In addition, adding too many exits (e.g., adding an exit at the end
of each block) may result in the long latency of the queries that do
not exit early, since a bridge, a head, and an exit check structure are
all required in each exit.

Figure 3 shows the numbers of MACs (Multiply-Accumulate
Operations) in the backbone and the head of various DNN tasks.
As shown in the figure, the sizes of heads are various for differ-
ent tasks and can be relatively large. For example, when the input
image shape is (3, 224, 224), the OCRNet [45] (head for semantic
segmentation) requires 12.64 GMACs (12.64x10° MACs) which is
34.6% of the backbone and the Simple [48] (head for pose estima-
tion) requires 5.77 GMACs which is 73.5% of the backbone. The
computational overhead of the heads in exits can not be overseen.

Worse, the added exits invalidate the graph optimizations which
can only be applied when the model is compiled as a whole, and
interrupt the inference process. Restarting the remained model
requires additional kernel invocation and data movement. For in-
stance, it is possible to add 11 exits for a DNN model with the BERT
backbone that has 12 blocks. While adding 11 exits only introduces
0.0003% additional multi-add operations in total, the inference time
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Figure 4: The design of PAME, illustrated by an example of a two-stage batch inference with ResNet101 as the backbone.

of the queries that arrive at the last exit increases from 16.75 ms to
20.03 ms, with the batch size 16.

In multi-exit batch inference, it is also possible that the latency
of inference queries that do not exit early does not increase. This
is because if fewer queries are processed in the later part of the
DNN model, the time needed to run the later part of the model
reduces. There is a trade-off between the reduced computation from
the fewer queries and the increased computation brought by the
exits. To this end, the placement of exits should be determined by
the input pattern, as the pattern impacts the number of inference
queries that can return at each exit. It is also worth noticing that,
since the batch size may be reduced after each exit, the inference
engine has to handle the dynamic batch size efficiently.

PAME has to consider the input pattern of the inference queries,
as well as the computation of the exit structure when building the
multi-exit DNN model for reducing the inference latency.

4 DESIGN OF PAME

We design PAME to build a multi-exit inference network for re-
ducing the latency of queries. The multi-exit DNNs are trained
following two constraints. First, the modification to the network
shall not harm the task precision. Second, for a batch of inference
queries, its tail latency in a multi-exit model is not increased com-
pared with its tail latency in the original case.

The inference engine is also redesigned to handle the dynamic
batch sizes. Specifically, we slice models into multiple stages and
each stage contains an exit. Then the leaving of samples would
not cause interference between different stages within a batch and
would not change the batch size in each stage.

4.1 Building a Multi-exit Model

PAME does not build a new multi-exit DNN model from scratch,
but transforms an existing single-exit DNN model into a multi-exit
DNN model. The transformation is done as follows.

(1) PAME identifies the exits equidistantly along the backbone as
exit candidates. For each exit candidate, the bridge structure is
designed based on the structure of the intermediate features
at the exit. PAME trains all the parameters of the multi-exit
network (the backbone, bridges, and heads) together (Section 5).

(2) PAME selects the actual exits from the exit candidates based
on the input pattern and the overheads of each exit (Section 6).

The input pattern impacts the number of queries that may exit
from each exit with enough precision. In each step, PAME finds
the very exit that brings the shortest average latency for the
queries without increasing the latency of the queries that go to
the final exit. The found exit breaks the DNN model into two
stages. PAME recursively applies the same algorithm to break
the later stages.

In our design, the exit candidates can only be placed at the end
of the blocks. We use blocks as the granularity to add exits, because
the block is the basic unit/step to compress information to a low
dimensional space mathematically [13]. In addition, many graph
optimizations are done between layers in the same block [14, 53].
Adding an exit in a block invalidates the graph optimization, and
incurs the high cost of data movement between stages, as there are
high data dependencies within a block.

4.2 Serving with a Multi-exit Model

Figure 4 shows an example of serving an inference batch on a two-
exit DNN model with ResNet101 as the backbone. In the figure,
the original DNN model is divided into two stages by the newly
added exit at the exit point. We use My_, y and Hy' to represent the
backbone and the head of the original single-exit model separately,
and N is the number of blocks in the DNN model.

Let a represent the ID of the block of the exit in Figure 4. In this
case, the original model is divided into model-1 ((My—¢q + H]) and
model-2 (Mg N +HN]). Hy is the newly attached exit. PAME runs
model-1 and model-2 using different inference engines, and the two
parts communicate through the control flow and data movement.

PAME serves a batch of queries as follows. 1) The entire batch
with batch size n is enqueued to the inference engine for model-1.
2) When model-1 completes, the exit check structure after H, reads
the output data of all the queries, and determines the queries that
can exit. The queries that have high enough precision return, and
the other queries proceed to model-2. The number of queries which
moved on to model-2 is b. 3) The b queries’ intermediate features
are copied from engine 1’s output buffer to engine 2’s input buffer.
4) Engine 2 runs model-2 with batch size b and then returns the
final results.

Since later stages may have small batch sizes, the GPU resource
may not be fully utilized. In this case, stages with small batch sizes
can be concurrently executed with the early stages of other batches
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as depicted in Figure 5. However, the co-location may slow down the
current batch. Therefore, we use an empirical batch size threshold
7p to estimate if loading new batch would benefit. If the number of
moving-on queries is lower than 73, a new batch can be enqueued
to Engine 1 on another stream. With the parallel batch scheduling,
later batches may start earlier and have a shorter queuing time.

5 THE STRUCTURE OF AN EARLY EXIT

In a newly added exit, a bridge transforms the intermediate features
to the form required by the head, a head performs the inference
based on the output of the bridge, and an exit check structure deter-
mines whether each query can exit with potentially high precision.

5.1 The Bridge in an Early Exit

Aiming at introducing fewer new model structures, it is intuitive
to imitate the original backbone to construct bridges. For an exit,
its bridge is initially identical to the entire backbone after the exit
point to promise connectivity to the head. Bridges are not required
for BERT-based DNN models, because the backbone can be directly
connected to the heads to form exits.

It is crucial to minimize the bridge overhead, while still making
sure the bridge can achieve its basic functionalities. In general,
PAME should drop as many blocks in a bridge as possible while
promising the bridge can still transform the feature maps to the
required form of the head.

A DNN backbone is often composed of several regions [21, 27, 38]
and blocks within a region have identical structures of intermediate
features. Based on this finding, in the bridge of an exit, we only
keep the first block in each region after the exit point. In this way,
the bridge is capable of transforming the intermediate feature map
to the required form of the head.

Take the ResNet101 backbone in Figure 4 as an example. In
ResNet101, the feature map at the exit point has a dimension of
[bs,512, h/8, w/8]. It is not compatible with the input dimension of
the head, which is [bs, 2048, h/32, w/32]. Thus, the bridge is initially
identical to the backbone after the exit point, and then drops all
the repetitive blocks except the first block in region-3 and the first
block in region-4 for the feature alignment.

Note that the bridge also supports the skip connections, as skip
connections are required [36, 45] in some tasks (especially CV tasks
with CNN backbones). Skip connection means that the head receives
features from different regions in the backbone. For example, the
OCRNet receives features from both region-3 and region-4 (green
dash arrows in Figure 4). Since the bridge consists of at least one
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block in different regions, it can also provide the features that the
head requires, thereby achieving skip connections.

5.2 Training the Heads in Exit Candidates

After determining the bridge structure, the parameters within an
exit should be determined. Since exits are selected from exit candi-
dates according to their performances, we first determine the exit
candidates and then train them to achieve their best precision.

It is redundant to regard all possible exits as candidates because
the performances between adjacent exits are similar. Moreover, with
many exits trained together, the parameters among exits affect each
other and make the training process unstable [35]. Thus, we only
select K exits equidistantly along the backbone as candidates. For
the i-th exit candidate, the corresponding block ID is e; = ai +b,i €
[1, K], so there are a blocks between two adjacent exits and the first
exit candidate’s block ID is a + b. Then in each training epoch, all
parameters in [Mo—, N + He, + He, + - - - + Hey + HN] are trainable.

To shorten the time for convergence, we initialize the parameters
of exits by parameter transfer as shown in Figure 4. It is intuitive
and convenient to transfer the parameters in the original backbone
to the bridges and heads in the exit for initialization. Since the
parameters have already been trained in pre-trained backbones
(ResNets trained on Imagenet [8] or BERT trained on vast English
text data [4]), we only need to fine-tune the parameters to obtain
satisfying models.

The fine-tuning is done offline with the corresponding training
dataset in each task. The training loss is computed as the weighted
average loss of all heads. Since we have no priori preference for
those exits, the weights of loss are identical.

5.3 Defining the Exit Check Structure

For an exit, its exit check structure decides whether an input query
should return from the exit or not. The decision is made based on
the output values of the head, as the output values already include
much high-level semantic information for the corresponding DNN
model. For instance, the outputs of the head in a classification
model show the probability values of different labels. Based on such
semantic information, PAME is able to identify whether the result
of an input query is confident enough to return.

In general, a head often generates high-dimensional outputs. For
instance, in the pose estimation task [10], the outputs of the head
are 16 heatmaps of size (96, 96), representing the probabilities of 16
human knots. The exit check structure should be able to determine
whether a query can return based on the high dimensional outputs.
Figure 6 shows the rule-based policy used to achieve the above pur-
pose. The exit check structure incorporates a dimension reduction
step and a threshold check step.

Both the dimension reduction and the threshold check are DNN
task-dependent, as the outputs of the heads are different for the
tasks. In this case, the exit check is customized for DNN tasks based
on their semantics. In principle, the dimension reduction finds the
principal values among all output values. It reduces the size of
outputs, and eliminates irrelevant dimensions for the threshold
check; The threshold check judges whether the principal values
can show sufficient confidence for the query to exit. If the quality
and quantity of the selected principal values are high, there is
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sufficient confidence that the query can achieve sufficient precision
already [33, 54]. Thus, a confidence threshold and a count threshold
are used in the threshold check. For each query, we first count the
principal values that exceed the confidence threshold. If the number
exceeds the count threshold, we allow the corresponding query to
exit as shown in Figure 6.

As examples, we describe the exit check structure for classifica-
tion, pose estimation, and semantic segmentation tasks. For clas-
sification tasks, the outputs are probabilities of labels. During the
dimension reduction, the maximum probability value is regarded as
the principal value. During the threshold check, the principal value
should exceed the confidence threshold to let the query exit. Since
there is only one principal value in classification tasks, there is no
need to apply the count threshold. For the pose estimation task
that aims to obtain a regression of human pose [10], the outputs
of the head are 16 heatmaps of size (96, 96). During the dimension
reduction, the principal values are the 5 highest probabilities from
all pixels in each heatmap. For the semantic segmentation task that
aims to classify every pixel of the image on Cityscapes [15], the
outputs of the head contain 19 label probabilities for every pixel
in the image. During the dimension reduction, the principal values
are the highest probabilities for every pixel. During the threshold
check for both the pose estimation and the semantic segmentation
tasks, the quality and quantity of the principal values are compared
with the confidence threshold and the count threshold, separately.

The exit check structures for different exits in a DNN task are the
same, except for the confidence threshold and the count threshold.
The thresholds change with the input load patterns.

6 DETERMINING THE TO-BE-USED EXITS

As the load pattern of the inputs changes, the numbers of queries
that have enough precision at different exit candidates vary. To this
end, PAME uses the actual load of a multi-exit model to determine
the to-be-used exits from the exit candidates.

6.1 Steps of Determining the Exits

Since there are many exit candidates and each candidate has two
thresholds (Section 5.3) that can be configured, there is a large
number of applicable combinations of the exits. Suppose there are
K exit candidates and each threshold has 10 possible values. The
number of possible exit combinations is (1 + 10 X 10)X. The search
space is huge if we consider all the combinations.

To resolve the large search space problem, PAME determines the
exits one by one. Specifically, to determine the first exit in a DNN
model, PAME first identifies the threshold configurations for each
exit candidate, as if it is the only exit (Section 6.2). The threshold
configurations ensure that the overall precision is satisfactory no
matter which exit is attached. Next, PAME profiles the latencies
of the exit candidates (Section 6.3). The exit candidate that results
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in the shortest average latency without increasing the tail latency
is selected to be the first exit (Section 6.4). After the first exit is
determined, PAME performs the above three steps iteratively on the
part of the DNN model after the exit to determine other applicable
exits.

By adopting the above method, the searching complexity is re-
duced to O(10 x 10 x K)?. The iterative method can still find the
near-optimal exit combinations.

6.2 Precision-aware Candidate Configuration

We capture the real historical load of the DNN service to be a dataset
D for determining the thresholds in this step. The thresholds of an
exit candidate should not be configured beforehand based on the
training dataset, as they directly control the moving-on ratio (the
ratio of queries that move on to later stages) after each exit, thereby
influencing the overall precision of real load. Based on the real load,
PAME finds the thresholds for an exit candidate that can achieve
the required overall precision and minimize the moving-on ratio to
minimize the average latency.

In this step, we profile the overall precision and the moving-on
ratio for each combination of thresholds in each exit candidate. Let
Hg represent an exit candidate and p* represent the exit candi-
date’s confidence threshold and the count threshold. To calculate
the corresponding overall precision with the configuration on the
real dataset D (denoted as Q%(p%)), we collect the ratio of queries
that return from the exit, r¥(p®). Equation 1 calculates the over-
all precision in this case. In the equation, Q% (p%) is the average
precision of queries return from H,, and Q% (p%) is the average
precision of the moving on queries.

QU(p*) =rg (P*) x Q¢ (P*) + (1 = rg (@) x QO (@) (1)

For the exit candidate H,, we select the p* for which Q% (p%¥) >
nQori and r& (p%) is maximized. Qori is the prediction precision
of the original single-exit model. 7 is the task precision tolerance
and 0 < 5 < 1. Figure 7(a) shows an example of determining the
thresholds for the pose estimation DNN task. In the figure, the
z-axis is the overall precision.

The overall precision will be changed when new exits are at-
tached. Then, if exit H, i is attached after H, with thresholds pﬂ ,

05, (p®) will be updated by Qf(p%) = rf () x QL) + (1 -
rf p#)) x Q,ﬁn(pﬁ ) and Q%(p%) will also be updated accordingly.
We compare the updated Q% (p%*) with nQorj to decide whether to
keep Hpg.

6.3 Characterizing the Inference and the Load

The above step finds the exit candidates and their thresholds to
achieve the required precision. However, the added exits may result
in the long latency of the queries that do not exit early.

For each exit candidate, it is intuitive to profile and record laten-
cies directly with the simulated load. However, adopting the naive
profiling method, the latency overhead has to be profiled again to
re-determine the optimal exit placement, whenever the hardware’s
utilization, the query load or the thresholds change.

If the batch size for each inference stage is fixed, the inference
time of a batch will not be affected by the inputs of the queries. In
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Figure 7: Illustration of the recursive exit searching procedure.
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this case, we decouple the profiling of the inference time at differ-
ent batch sizes and the input loads to get rid of the cumbersome
profiling. We use an inference time matrix to record the two-stage
inference latency, and use a batching pattern matrix to record the
batching pattern of loads for each exit candidate. When the hard-
ware changes, we only need to update the inference time matrix;
and when the input pattern changes, we only need to update the
batching pattern matrix. The profiling effort is greatly reduced.

6.3.1 Inference Time Matrix. To identify feasible batch size con-
figurations in each stage, we profile the query latency with the
inference time matrix. Given a model [My_,n + Hy] and an as-
signed batch size n, we first record its n—batched inference time ¢/
as the original tail latency.

Figure 7(b) shows an example of the inference time matrix. For
the exit candidate at exit point e; (i € [1,K]), we profile the latency
of the two-stage inference, including the n-batched inference of
[Mo—se; +He,;] and the njf—batched inference of [M, Ny +Hn]. The
batch size of the second stage nj = ju, where v is the profiling batch
size interval, and n;‘ is not larger than the batch size of the first stage.
For instance, in Figure 7(b), the t4 3 represents the elapsed time in
executing [Mo—e, +He, ] with batch size n = 16 and [M, N +HN ]
with batch size nj = 3v = 6. The elapsed time of the two-stage
inference also includes the time consumed in exit checking, data
movement and kernel invocations for the second engine as shown
in Figure 8.

In each iterative searching step, the inference time matrix records
the latency of the two-stage inference beginning from the previ-
ously selected exit. It is important to decide the batch size of the
first stage properly. In the first searching step, the batch size of the
first stage is n. In later steps, the batch size of the first stage for
profiling is the maximum allowed number of samples remaining
from the previous exit. As the example in Figure 7(b), if exit He,
was picked in the first step, the batch size of the first stage in the

posterior step would be ngy = 10. Then the inference time matrix
should update t; ; as the time that executing [Me,—e; + He; ] with
batch size ny = 10 and executing [M,, N + Hn] with batch size
n}f, where i € (4,K] and n;‘ < ng = 10.
6.3.2  Batching Pattern Matrix. The batching pattern matrix is gen-
erated from the real historical load D. We separate D into k batches,
collect the number of moving on samples in each batch, and record
it in the batching pattern matrix. Figure 7(c) shows an example of
the batching pattern matrix. In the matrix, each row is actually a
histogram to record the number of batches. The size of the batching
pattern matrix is the same to the size of the inference time matrix.
In Figure 7(c), the batching pattern matrix reveals that among k
batches, C3,3 batches allow [6, 8) samples to exit from He, and Cy 5
batches allow [10, 12) samples to exit from He, . In the posterior step
of the recursive searching, Figure 7(e) shows that there are C7,2 out
of k batches allow [4, 6) samples to exit from H,, and those are the
samples that did not exit from the last selected exit He,.

6.4 Latency-Aware Exit Determination

After obtaining the profiling results, we select the first exit with the
shortest average query latency as shown in Figure 7(d). With exit
H,, attached, the average two-stage inference latency is denoted
as T;l Vg, and its expectation is estimated with the inference time
matrix and the batching pattern matrix as shown in Equation 2.

1
avgy _ § . L. ..
EL5 =18 oqh(("‘"?)“ﬁ*"}f i) Cii ()
=

Before determining the exit, we first eliminate the exit candidates
with which the tail latency is violated. The original tail latency ¢[f
is reflected on the boundary in the inference time matrix. To ob-
tain the boundary, each element in the inference time matrix is
compared with t[. Any configuration of n with which the corre-
sponding tail latency exceeds #] is regarded as a latency violated
configuration. We accept slight exceptions because outliers are in-
evitable. If the ratio of the latency violated batches is lower than
the latency violation threshold 7;, the exit is still acceptable.

For instance, as shown in Figure 7(c), when exit He, /H,, is at-
tached, the latency of some batches within the dataset are violated
and the ratio of latency violated batches is not negligible. Thus,
exit He, and He, are latency violated exits and should be filtered
out first. Then the exit should be selected from the remaining exit
candidates with the shortest average latency, which is He, .
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The searching target in posterior searching steps is different from
that in searching for the first exit. In posterior steps, we estimate
the tail latency instead of the average latency of the two-stage
inference, and select the exit providing the shortest tail latency.
That is because the batch size of the first stage is various in later
steps and we can no longer estimate the average latency accurately.
We estimate the tail latency by fixing the batch size of the first stage
as the maximum allowed batch size of the previous step.

Suppose the last found exit is He, and the maximum allowed
batch size for stages after H, is nj, then the estimated two-stage
tail latency after attaching He, is Titail =twjo ¥ T:l’_> e t Te‘:_’H N
where w is the batch size of the second stage. Here, we omit the
time consumed between stages because it is negligible compared
to the execution time of engines. Thus, as long as w < n;, where
n; is the maximum allowed batch size for stages after He,, the tail
latency violation is eliminated as proved in Equation 3.

THail Tone, + Tyl N <Tejse, + TN < Te"l’_)N 3)

Thus, we pick the exit with the shortest estimated average la-
tency in the first searching step and pick the exit with the shortest
estimated tail latency in posterior steps.

There are two situations in which the searching for exits is
terminated in advance. First, if none of the rest exit candidates can
guarantee the task precision (the precision violated exits as shown
in Figure 7(e)) or all exits violate the tail latency requirement, the
samples will directly be delivered to the original final exit. Second,
if all samples in all batches exit from a specific exit, we will also
cease searching.

7 EVALUATION OF PAME

In this section, we evaluate the performance of PAME.

7.1 Implementation and Experimental Setup

In PAME, all the models are compiled with TensorRT [9] and the
ONNX [7] format. During batched inference in PAME, in each
inference stage, the corresponding model is first executed with
TensorRT and the intermediate features of the queries are stored in
an output buffer. Then, in the exit check phase, every single output
value is analyzed by a thread in CUDA [41] and the instruction of
data movement is then generated. Since the features of moving-on
queries may not be contiguous in the memory space, we assign
threads for each query to copy the features to the input buffer of the
next stage. The copy incurs minor overhead as shown in Section 7.7.

Table 1 describes the experimental setup and lists 4 representa-
tive DNN tasks used to evaluate PAME in Computer Vision (CV)
and Natural Language Processing (NLP) fields. The tasks cover the
popular CNN and transformer backbones. We apply the widely-
used ResNet101 as the backbone for CV tasks and BERT-base for
NLP tasks. For semantic segmentation, we use a dilated variation
of ResNet101 used in the original work [51]. We use small, medium,
and large batch sizes for all the tasks to evaluate PAME. The batch
sizes are 2,4, 8 for the semantic segmentation task, as the input
batch has a size of (bs, 3, 1024, 2048), which is sufficiently large. In
this case, semantic segmentation can fully utilize the GPU with a
small batch size. The three batch sizes are 16, 32, 64 for other tasks.
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Table 1: The hardware, software, and benchmarks.

Hardware CPU: Intel Xeon Silver 4210, GPU: Nvidia Tesla V100
OS & Driver Ubuntu: 18.04.1 (kernel 5.4.0); GPU Driver: 470.57
Software CUDA: 11.4; TensorRT: 8.03; ONNX 11; Pytorch 1.9.1; Python 3.7.4
Backbone ResNet101 [27] BERT-base [21]
Head FC layer Simple [48] OCRNet [45] FC layer
Imagenet [20], GLUE [44]
MPII human- .
Benchmark Imagenette; Cityscapes [15] (MRPC, SST-2,
pose dataset [10]
Imagewoof [5] ONLIL RTE)
) X X X Semantic X )
Task type Classification Pose estimation ) Classification
segmentation

When training multi-exit models for the above DNN tasks, we
empirically use 11 exit candidates for both ResNet101 and BERT-
base. More candidates does not improve the results. The positions of
exit candidates for ResNet101 backbones are e; = 3i — 2,i € [1, 11],
so the interval between exit candidates in ResNet101 is three blocks
and the first exit candidate’s position e; = 1. The positions of exit
candidates for BERT-base backbone are e; = i,i € [1,11].

The baseline models are pre-trained models provided in released
model repositories. We fine-tune pre-trained models to obtain multi-
exit models. Unless otherwise stated, the task precision tolerance
n = 0.99 and the latency violation threshold 7; = 0.02 in the
recursive exit searching process. For each benchmark, we divide its
validation dataset into two parts evenly without overlap. One part
is used to simulate the inputs, with which PAME determines the
to-be-used exits. The other part is used to evaluate the performance
of the generated multi-exit model.

As the existing serving systems [6, 16] do not perceive the preci-
sion information during a batch’s inference, they all use the single-
exit inference. The algorithm works on proposing multi-exit models
added many exits only for the high precision [30, 32, 54]. The added
exits inevitably introduce heavy latency overhead for the queries
that do not exit early. They often result in the long tail latency. To
this end, we use the widely-used single-exit batch inference system,
TensorRT [6], as the baseline.

7.2 Reducing the Response Latency

Figure 9 shows the average and the tail latencies of the tasks with
the multi-exit models trained with PAME. In the figure, “S”, “M.”,
and “L” in the x-axis shows the case with the small, medium, and
large batch sizes respectively. The horizontal dashed lines show the
latency of the single-exit model with TensorRT. For a single-exit
inference, the average latency and the tail latency are the same.

As observed, PAME reduces the response latency of all the tasks
in all the cases. Compared with the single-exit inference, PAME
reduces the average query latencies by 41% for three image classifi-
cation tasks (Imagenet, Imagenette, Imagewoof in Figure 9(a)), 24%
for pose estimation task (MPII in Figure 9(b)), 24.1% for semantic
segmentation task (Cityscapes in Figure 9(c)) and 44.8% for four
NLP tasks (MRPC, QNLI SST-2, and RTE in Figure 9(d)) on average.
The tail latencies are also reduced by 23.7%, 11.8%, 24.1%, and 37.2%,
respectively. PAME can reduce the average tail latencies of the
benchmarks, because it only ensures that the tail latency does not
increase in the worst case and the average tail latency is usually
shorter than the longest tail latency.

The latency reduction results from the early exits found by PAME.
The found exits are shown in Figure 10. As we can see, only one
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Figure 9: The tail and average latencies of batched queries in different tasks with PAME.
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Figure 10: Exits found by PAME for the tasks.
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Figure 11: The normalized task precision at different exits.

early exit is found in Imagenet, Imagenette, Imagewoof, MPII and
RTE. Two exits are found in MRPC, QNLI and SST-2. Many queries
in a batch return from the early exits. We can also find that the
tail latency and the average latency are the same in Cityscapes as
shown in Figure 9. This is because all the queries in all batches
actually return from the early exit found by PAME.

Figure 11 shows the average precision of the queries that re-
turn from the first exit, the average precision of queries that return
from the final exit and the overall precision. The precisions are nor-
malized to the original single-exit model’s precision. The overall
precision is 99.68% of the original model on average. Except for
Cityscapes and RTE, the precisions of the first exit are already higher
than baselines, which validates the effectiveness of early exiting;
the precisions of the final exit are lower than baselines because the
queries that arrive at the final exits are more difficult. Although
slight task precision degradation is tolerated and expected, results
on Cityscapes and RTE show better precisions (103% and 101% sepa-
rately). This is because more effective exits are obtained through
parameter fine-tuning in these two cases.

7.3 Effectiveness of the Exit Selection

In this experiment, we show whether PAME finds the appropriate
exits from many exit candidates. We use Imagenet classification
task as the benchmark in the subsection due to the limited space.
Other tasks show similar results.
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Figure 12: Latencies of queries when an exit is attached at
different positions in the Imagenet classification task.

Figure 12 shows the latency reduction when the first exit is added
at different positions. Let H, represent an exit at the end of the
block with block ID «. Then the exit candidates are Hy, Hy, - - - , H3q,
with the block ID of exit candidates being e; = 3i — 2. It is worth
noting that exits Hy, Hy, H7 and Hjo are not applicable actually
because the corresponding real latency violated ratios exceed the
latency violation threshold 77, which is 0.02 set in our experiment.
The exit Hy3 has the lowest average latency among the remain-
ing exit candidates, as the preceding exit candidates do not allow
many samples to exit and posterior exit candidates are too late
for reducing latencies. Hjs is the fifth exit candidate for Imagenet
classification as shown in Figure 10.

The error bar indicates the difference between the real latencies
and the estimated latencies calculated from the inference time ma-
trix and the batching pattern matrix. The estimated tail latency and
the estimated average latency are accurate approximations, with
less than 5% relative error. The latencies with different exits in other
tasks share a similar pattern.

7.4 Effectiveness of the Inference Time Matrix

The inference time matrix and the batching pattern matrix deter-
mines the to-be-used exits in a task. In this experiment, we look
into the inference time matrices of different tasks, and explain why
different exits are found for them.

Figure 13 shows the inference time matrices of different tasks
when searching for the first exit. As observed, the inference time
matrices of ResNet101+FC and ResNet101+Simple [48] show high
differences. The allowed batch size for the second stage after attach-
ing FC-layer-based exits is not significantly reduced, because the
FC layer itself costs little. However, due to the large computation
brought by the deconvolution layers in Simple [48], the allowed
batch sizes for the second stage are rather low no matter where the
exit is attached (Figure 13(b)).
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Figure 14: The moving-on ratio after the first exit with dif-
ferent precision tolerances.

We can also find that there is a flat boundary in the inference
time matrix for Bert-based tasks in Figure 13(c). The flat boundary
originates from the compiler mechanism. In general, the compiler
performs padding for the batch. For example, the elapsed time of
running an inference with batch size 9—15 is similar to the inference
with batch size 16.

Some readers may find that the last early exit (H31) in Figure 13(a)
allows larger batch sizes for the second stage inference than the
penultimate exit (Hag). This is because the exit structures of them
are different (Hpg includes an additional feature alignment block
while H3; only includes the FC head). The large computation over-
head in Hyg suppresses the batch size allowed for the second stage.

7.5 Effect of Adding Multiple Exits

Figure 11 shows that with the first exit attached, the overall pre-
cision has already been reduced in most cases. In general, if the
overall precision has already reached the precision tolerance, it is
not necessary to add more exits.

Figure 14 shows the moving-on ratio of queries after the first
exit. As observed, the moving-on ratio of samples is only 21.6% on
average when n = 0.99. If we allow more tolerance of the precision
degradation by setting 1 = 0.98, the moving-on ratio is 12.6%
on average. The moving-on ratio even becomes zero (all samples
exit from the first exit) for MPII and SST-2. If we set the precision
tolerance to 0.995, there are still more than half of the samples
would exit from the first exit. Therefore, if we apply exits after the
first exit, there are only opportunities that the latencies of less than
half of the samples can be reduced.

Among tasks with multiple early exits, we only show the laten-
cies with different numbers of exits on the task of QNLIin Figure 15.
Other tasks with multiple early exits (SST-2, MRPC) share a very
similar pattern with QNLIL We record the average latency in the
1-exit configuration with exit Hs and the 2-exit configuration with
exit Hg and Hg. Compared with the 1-exit configuration, neither
the tail latency nor the average latency is reduced dramatically
(reduced by 5% for the tail latency and 0.8% for the average latency)
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Figure 16: The effectiveness of adapting to the load changes.

with the 2-exit configuration. Generally, the latency reduction is
gradually reduced with the increasing of the exit count.

7.6 Adapting to Load Changes

In a specific period of serving, the input data distribution may
be different from the distribution of data based on which the in-
ference system is initialized. We evaluate PAME in adapting to
the load changes in this subsection. In this experiment, we use
ResNet101+FC as the model for the image classification task. Specif-
ically, we train the multi-exit model with Imagenet, and use Ima-
genette [5] and Imagewoof [5], to be the validation dataset. Other
tasks show similar results. Figure 16 shows the cases when the input
data pattern changes from Imagenet to Imagenette or Imagewoof.

If the input load changes to Imagenette (case 1), the moving-on
queries at the exit will be more than expected. The latency violation
ratio will be increased from 0.003 to 0.065. In this case, we have to
move the exit to a posterior position where the latency violation
is bearable. With Imagenette, the new exit is Hyg. After that, the
latency violation ratio is reduced to 0.008.

If the input load changes to Imagewoof (case 2), the moving on
queries will be less than expected. The latency violation ratio is
decreased to 0, but the normalized task precision reduces from 99.1%
to 97.8%. In this situation, the thresholds in exit check structures
should be adjusted first to meet the precision requirement. After
raising the confidence threshold from 0.55 to 0.6, the task precision
is increased to 99.2%.

Incremental learning can be used to quickly update the multi-
exit model based on the up-to-date input pattern. Once the input
pattern change is observed, the adjustment can be done based on
the inference time matrix and batching pattern matrix directly.

In general, if frequent latency violation is encountered, PAME
moves the exit to a posterior position of the backbone instead
of adjusting the exit check structure, since changing the moving-
on ratio brings great risk of degrading the task precision. If the
precision is not guaranteed, PAME raises the threshold of current
exit to improve the task precision.
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Figure 18: The latency and the throughput of image classifi-
cation tasks with PAME and parallel batch scheduling.

7.7 Overhead Analysis

The attached exits as well as the exit check and the data movement
between stages may incur runtime overhead. Figure 17 shows the
average latency breakdown of queries that do not return early in
the two-stage inference. Due to limited space, we only show two
typical tasks: Imagenet on ResNet101+FC for image classification,
and MPIT on ResNet101+Simple for pose estimation. Other tasks
show similar trends.

As observed, the main overhead comes from the computation of
exits. For Imagenet, the exit computation in stage 1 occupies 8.9%
of the total model computation time. For MPII the exit computation
occupies 27.9% of the total time. Overall, the execution of models
takes up to 98.9% of the total inference time. The exit check phase
only occupies 0.1% of the total inference time and the data move-
ment occupies 1.0% on average. Thus, the overhead from exit check
and data movement is insignificant compared to the computation
of exits.

7.8 Opportunity of Parallel Batch Scheduling

If the hardware is not fully utilized when the batch size is small
in later stages of a batch, parallel batch scheduling introduced in
Section 4.2 can be used to increase the serving throughput. When-
ever the number of queries being processed is lower than the batch
size threshold 73, a new batch can be enqueued to the engine. By
adjusting 73, we can have a trade-off between the average latency
and the overall throughput.

Take image classification tasks as examples. As shown in Fig-
ure 18, both the throughput and the average latency of image clas-
sification tasks increase with 7;,. However, the throughput improve-
ment is limited because large 75, will cause frequent violation in
tail latency. When 7, < 4, the ratio of latency-violated samples
is below the latency violation threshold 7; = 0.02. The ratio of
latency-violated samples becomes 0.03 when 7, = 6 and 0.12 when
7, = 8, which are both unacceptable.

PAME improves 28.9% throughput in image classification tasks
on average, and the throughput improvement increases to 31.3%
with the parallel batch scheduling.
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8 CONCLUSION

In this work, we propose a precision-aware mechanism to attach
multiple exits on DNN models to reduce latencies. The proposed
multi-exit DNN serving system allows queries to run in batch but
exit independently. First, we determine the exit structure by design-
ing bridges, heads and exit check structures separately. Second, we
apply a method to determine the to-be-used exits based on input
patterns. PAME takes the exit overhead into consideration and the
tail latency of a batch is not increased. Overall, PAME achieves up
to 51.4% latency reduction while maintaining 99.68% precision of
original models on average.
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