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Abstract—The proliferation of machine learning applications
has promoted both CUDA Cores and Tensor Cores’ integration
to meet their acceleration demands. While studies have shown
that co-locating multiple tasks on the same GPU can effectively
improve system throughput and resource utilization, existing
schemes focus on scheduling the resources of traditional CUDA
Cores and thus lack the ability to exploit the parallelism between
Tensor Cores and CUDA Cores.

In this paper, we propose Tacker, a static kernel fusion and
scheduling approach to improve GPU utilization of both types of
cores while ensuring the QoS (Quality-of-Service) of co-located
tasks. Tacker consists of a Tensor-CUDA Core kernel fuser, a
duration predictor for fused kernels, and a runtime QoS-aware
kernel manager. The kernel fuser enables the flexible fusion of
kernels that use Tensor Cores and CUDA Cores, respectively. The
duration predictor precisely predicts the duration of the fused
kernels. Finally, the kernel manager invokes the fused kernel or
the original kernel based on the QoS headroom of latency-critical
tasks to improve the system throughput. Our experimental
results show that Tacker improves the throughput of best-effort
applications compared with state-of-the-art solutions by 18.6%
on average, while ensuring the QoS of latency-critical tasks.

Keywords—Tensor Core, GPU Utilization, QoS.

I. INTRODUCTION

GPUs have been widely adopted as a flexible acceleration

solution for a wide range of modern applications, in par-

ticular, image processing applications [27], [47]. With fast

technology advances, modern GPUs have become increasingly

more powerful, which integrate a large number of CUDA

Cores for improved parallelism, e.g., 4352 CUDA Cores in

Nvidia RTX2080Ti. Furthermore, to meet the acceleration

demands from proliferated AI/ML (artificial intelligence and

machine learning) applications, recently released commodity

GPUs, e.g., Nvidia Volta [9] and later architectures, integrated

Tensor Cores in streaming multiprocessors (SM) for speeding

up general matrix multiplication (GEMM), the main type of

operations in AI/ML applications.

Given the abundant computing resources in modern GPUs,

studies have proposed co-locating multiple applications onto

the same GPU, which can effectively improve resource utiliza-

tion and reduce system energy consumption, particularly for

computing servers in data centers. Based on QoS (Quality-of-

Service) demands, we may categorize two types of data center

applications: latency-critical (LC) applications/services and

best-effort (BE) applications. The former refers to those that

Quan Chen and Minyi Guo are corresponding authors.

Fig. 1: The active timeline of Tensor Cores and CUDA Cores

when Baymax is used to run Resnet50 and sgemm.

have stringent latency constraints, e.g., to recognize interesting

objects from a live video stream without glitches, the object

detection algorithm needs to finish within 50ms [25], [41],

[46]. The latter refers to those that have no or very loose

constraints, e.g., to breadth-first search a node in a graph

without setting a deadline. It is more cost-efficient to leverage

the under-utilized GPU resources to run some BE applications,

while guaranteeing the QoS in servicing an LC application.

To co-locate LC and BE applications, there are two types of

strategies: non-preemptive methods and preemptive methods.

Non-preemptive methods, e.g., Baymax [19] and Laius [59],

launch the kernels from BE applications only when the laten-

cies of LC applications are within the QoS target. Preemptive

methods, e.g., SMK [54] and Rollover [53], can preempt the

execution of BE kernels to ensure the QoS of LC applications.

However, off-the-shelf GPUs currently do not support preemp-

tion due to the context switch overhead and large hardware

cost [18], [28]. This paper focuses on developing novel non-

preemptive co-locating strategies, which are ready to deploy

for existing commodity GPUs [3], [8], [9].

Since existing co-locating schemes were developed mainly

to schedule resources of traditional CUDA Cores, they tend to

produce suboptimal results when being adopted for GPUs with

both Tensor Cores and CUDA Cores. Figure 1 illustrates the

active timeline of two units on the SM when Baymax [19] co-

locates LC services and BE applications on an Nvidia 2080Ti

GPU. In this experiment, we use Resnet50 [29] as the LC

service and sgemm from Parboil [49] as the BE application.

From the figure, we observe that, while the GPU can be

identified as computation-busy, either Tensor Cores or CUDA

Cores are idle at any given time. This problem is referred to

as the false high utilization problem in this paper.

The main reason behind this problem is that existing

schemes fail to recognize Tensor Cores and CUDA Cores

are independent resources. By scheduling a single kernel at
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any given time, they lack the ability to exploit both types

of cores in parallel. While commodity GPUs place their

warp scheduling in the black box, we test various scheduling

policies and find out Tensor Cores and CUDA Cores may be

used in parallel if different warps in a thread block of a kernel

use the two units simultaneously. This is because multiple

warps of a thread block are active at the same time. The inter-

warp divergence does not incur unnecessary computation in

the intra-warp divergence, as each warp has a deterministic

execution branch.We also observe that both LC applications

and BE applications have Tensor Core kernels and CUDA Core

kernels. By fusing the Tensor Core kernel and the CUDA Core

kernel from different applications, we could use the two types

of cores in parallel.

In this paper, we propose Tacker, a kernel fusion and

scheduling approach for resolving the false high utilization

problem. The approach enables parallel usage of both types

of cores by fusing CUDA Core kernel and Tensor Core kernel.

In order to ensure the required QoS of LC applications when

fusing kernels, Tacker is comprised of a Tensor-CUDA Core
kernel fuser, a duration predictor for fused kernels, and a

runtime QoS-aware kernel manager. Tacker introduces no

extra security vulnerability compared with Nvidia’s co-running

interface MPS [1]. In both Tacker and MPS, the original

programs launch the kernels, and a server process manages

the actual execution. To the best of our knowledge, this is the

first approach that can exploit the parallelism between Tensor

Cores and CUDA Cores. Our code is also released on the

Github1. We summarize our contributions as follows.

• We propose a static kernel fusion method to utilize two

hardware’s parallelism without online latency overhead.

The method prepares the static fused kernels for potential

LC and BE kernel pairs offline. These fused kernels use

persistent thread block to deal with dynamic inputs, thus

avoid online fusion overhead.

• We propose accurate prediction models for fused kernels

to ensure QoS of LC applications. As a fused kernel runs

longer than the original LC kernel, we adopt a model-

driven predictor to predict the fused kernel’s duration.

• We propose an online kernel management method to

execute fused kernels. It determines to invoke the original

kernel or the fused kernel accordingly, based on QoS con-

straints, the requirements of maximizing the throughput,

and the runtime inputs of the kernels.

We evaluate the proposed approach on real hardware

(Nvidia 2080Ti and V100 GPUs). Our experimental results

show that Tacker not only ensures the required QoS but also

improves the throughput of the co-located BE applications by

18.6% compared with Baymax on average (up to 41.1%).

II. RELATED WORKS

In recent years, several schemes have been developed to

improve GPU throughput [22], [54]. To achieve better GPU

scheduling, Wang et al. proposed SMK to exploit block

1https://github.com/sjtu-epcc/Tacker.git

preemption for block-level scheduling [54]. Based on block-

level scheduling, SMK improves the throughput of the system

by dividing the resources carefully. Park et al. proposed Mae-

stro to change the multitasking mode in GPU for achieving

better performance at runtime [44]. Wang et al. proposed to

scale memory resources to manage memory bandwidth [52]

so that an application-aware memory scheduler may be de-

veloped [35]. Optimizing SM management in multitasking

GPUs also helps to improve GPU throughput [15], [16], [30],

[37], [62]. These approaches infer the performance impact

of SM allocation based on related metrics. Besides, there

are works [21], [61] on multi-task scheduling, which are

orthogonal to Tacker.

It is important for ensure QoS (quality of service) in

GPU scheduling [23]. Baymax [19] and Prophet [18] ex-

ploited MPS scheduling to predict performance interference

among co-located GPU applications for a temporally shared

GPU. Laius et al. [59] proposed to predict the kernel dura-

tion and reorder the kernels on spatial multitasking GPUs.

TimeGraph [36] and GPUSync [24] adopted priority-based

scheduling to guarantee the performance of real-time kernels.

Since these works rely on MPS [1] scheduling at the kernel

level, they cannot exploit the parallelism from two types of

computing cores. Wang et al. [53], [55] proposed to employ

fine-grained sharing of SM-internal resources to improve QoS.

Jain et al. [33] proposed careful memory isolation to ensure the

performance of applications. When one of co-located kernels

has high priority, it would be scheduled first. These works

ensure the high-priority application’s performance, and they

are not applicable for the throughput problem in this paper.

HSM [65] and GDP [32] predicted the slowdown of co-

located GPU applications. Compared with Tacker, many exist-

ing schemes [32], [50], [63]–[65] rely on simulation to validate

the effectiveness and thus are not applicable to commodity

GPUs. In addition, these schemes do not consider two types

of computing cores and thus cannot explore the parallelism

between Tensor Cores and CUDA Cores. Besides the above

researches, there are also researches [39], [40], [56], [60]

for microbenchmark-based performance model development

for NVIDIA GPUs. These research works only model the

applications’ performance in different hardware, and could not

be adapted for the fused kernel’s duration prediction. They are

orthogonal to Tacker.

III. MOTIVATION

In this section, we first elaborate on the false high utilization

problem. We then discuss the potential in leveraging the two

types of computing cores for improving GPU utilization, and

summarize the challenges in exploiting this parallelism with

QoS requirements.

A. The False High Utilization Problem

To elaborate on the false high utilization problem, we

conduct an experiment to study the GPU utilization when co-

locating the kernels of an LC service and a BE application onto

a modern GPU that has both Tensor Cores and CUDA Cores.
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Fig. 2: The active time of the kernels with Baymax.

We choose a non-preemptive co-locating strategy Baymax [19]

to exploit the idle GPU cycles between the runs of LC kernels

for BE kernels and ensure the QoS of LC service at the same

time. We use six DNN models (Resnet50, ResNext, VGG16,

VGG19, Inception, and Densenet) as the LC services, and five

tasks (sgemm, cutcp, lbm, fft, mriq) from Parboil benchmark

suite [49] as the BE applications in the experiment. Each

kernel’s duration is collected to compute the duration of all the

Tensor Core kernels and all the CUDA Core kernels. These

two duration values are normalized to the QoS target.

Figure 2 shows the duration results of different co-located

kernel pairs. The red portion indicates the duration of all

Tensor Core kernels, while the gray portion indicates the

duration of all CUDA Core kernels. We stack the results to

show the overall active time of two hardware. From the figure,

we observe that the computing units’ overall active time equals

the QoS target for all the kernel pairs. This is because the two

types of cores are not active simultaneously.

From this experiment, we conclude that current co-locating

strategies generate sequential and interleaving execution of co-

located LC service and BE application, which leaves either

Tensor Cores or CUDA Cores in an idle state. This is referred

to as the false high utilization problem in this paper. Our

study shows that the false high utilization problem exists

widely when co-running LC services and BE applications.

B. Potential Parallelism Opportunity

We next study the potentials of utilizing CUDA Cores and

Tensor Cores in parallel. We construct several micro-kernels,

in which a thread block has both warps for CUDA Cores

and Tensor Cores. The micro-kernels are devised in this way

because the warp scheduler supports the warp scheduling for

the block with different warps since Tesla [14].

For example, we implement a micro-benchmark (referred

to as “Bench-A”) that fuses a Tensor Core kernel Kt and

a CUDA Core kernel Kc into one kernel. Kt and Kc have

the same duration. Kt uses the Nvidia official GEMM im-

plementation [4], [11]. Kc has the same grid dimension and

block dimension as the Tensor Core kernel. Each thread in Kc

performs pure computation using registers and has negligible

memory operations. In Bench-A, the first half threads of each

block are responsible for running Kt, while the other half for

Kc. We also implement two more benchmarks, “Bench-B” and

“Bench-C”, as shown in Table I. These two benchmarks run

two Kt and two Kc, respectively.

TABLE I: The normalized duration of the three benchmarks.

1st half 2nd half Duration
Bench-A Kt Kc 1.03

Bench-B Kt Kt 2

Bench-C Kc Kc 2
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0.5N
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m
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sgemm cutcp mriq fft lbm mrif stencil regtil cp
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Fig. 3: The duration of the fused kernels with artificial fusion.

Table I also shows the processing time of different micro-

benchmarks. The time is normalized to the duration of Kt.

From the table, the normalized processing time of Bench-A

is only 1.03, while that time of either Bench-B or Bench-

C is 2. In this experiment, Kt and Kc already occupy all

the Tensor Cores and CUDA Cores, respectively, so that their

normalized execution time is 2. This further indicates that the

improved execution time of “Bench-A” comes mainly from

the parallel execution on both types of computing cores. To

conclude, exploiting the Tensor Cores and CUDA Cores in
parallel can effectively improve the overall system throughput.

C. Challenges in Parallelizing Tensor/CUDA Cores

However, directly fusing a Tensor Core kernel and a CUDA

Core kernel does not always bring throughput improvement.

For example, we choose Kt as the Tensor Core kernel and

kernels from Parboil [49] benchmark suite as the CUDA

Core kernel. Figure 3 shows the processing time of the fused

kernels. The performance of the independent execution of each

kernel is normalized to 1. From the figure, the performance

of most fused kernels is around 2, indicating low parallel

utilization of both types of computing cores.

Direct kernel fusion’s inefficiency comes from the con-

tention for SM resources. If both component kernels use a

large amount of explicit resources (e.g., thread slot and shared

memory), the fused kernel could launch fewer blocks on

an SM. Both components are slowed down. Moreover, the

implicit resource contention (e.g., L1/L2 caches) also slows

down the execution of each component (Section V-C). Besides,

kernel fusion is very likely to introduce a longer return time.

Thus, inappropriate fusion may result in QoS violations.

To summarize, there exist three challenges in parallelizing

the Tensor cores and CUDA cores.

• The kernel fusion has to adapt to dynamic inputs.
While online fusion methods bring high overhead, a

static fusion method needs to adapt to dynamic inputs

at runtime. Besides, the static fusion should explore two

kernels’ maximum parallelism under limited resources.

• The kernel fusion has to quickly and precisely predict
the performance of the fused kernel. While the fused

kernel has a longer duration than the LC kernel’s original

duration, blindly fusing the active kernels may result in
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Fig. 4: The design overview of Tacker.

the QoS violation. It is challenging to make an accurate

prediction, as the fused kernel’s warps run different codes.

• The kernel fusion demands QoS-aware online kernel
management. When multiple kernels from LC services

and BE applications are available, Tacker should identify

the fusion decision that maximizes the throughput while

ensuring the QoS of LC services.

IV. THE TACKER DESIGN

In this section, we present the Tacker design to alleviate the

false high utilization problem and guarantee the QoS of LC

service at the same time in modern GPUs.

As shown in Figure 4, Tacker is a kernel fusion and

scheduling approach that consists of a Tensor-CUDA Core
kernel fuser, a duration predictor for fused kernels, and a

runtime QoS-aware kernel manager. The kernel fuser statically

combines the kernel using the Tensor Cores with the kernel

using CUDA Cores. The duration predictor exploits a two-

stage LR (linear regression) model to predict the duration

of fused kernels. Finally, the QoS-aware kernel manager

determines the appropriate kernels (either the original kernel

or fused kernel) to invoke at runtime.

To efficiently fuse a kernel from a Tensor Core kernel and

a CUDA Core kernel, Tacker transforms the dynamic grid

dimensions of the to-be-fused kernels to static grid dimensions

using Persistent Thread Block (PTB). The transformation elim-

inates the need to percept the grid dimension online. Since the

to-be-fused kernels use a different amount of resources (e.g.,

registers, shared memory, and global memory bandwidth),

another challenge is how to design an efficient mechanism

to maximize the throughput of fused kernels. (Section V).

As the fused kernel tends to finish in a longer time (com-

paring to original runs), we need to predict their duration

for ensuring the QoS of LC services. The challenge here is

that the widely-used linear regression for predicting a kernel’s

latency [18] is not applicable for fused kernels, as the warps

of a thread block run different codes in a fused kernel. In this

paper, we analyze the warp scheduling in a block of a fused

kernel, and predict the execution of a fused kernel using a

two-stage linear regression model (Section VI).

__global__ void fused_kernel(...) { 
if ( threadIdx.x < thread_num_tc 

&& blockIdx.x < block_num_tc) {
TC_kernel(...);

} else if (threadIdx.x < thread_num_cd 
&& blockIdx.x < block_num_cd) {
int thread_step = thread_num_tc;
int thread_id = threadIdx.x – thread_step;
CD_kernel(params, thread_id);

}
}

dim3 mix_grid, mix_block;
mix_grid.x = (block_num_tc > block_num_cd) \

? block_num_tc : block_num_cd;
mix_block.x = thread_num_tc + thread_num_cd;

Fig. 5: Implementation of direct kernel fusion.

The kernel manager may decide to invoke the fused kernels

or reorder the original kernels according to QoS headroom

of the LC query at runtime. When an LC query is received,

Tacker predicts the duration of each kernel in the query. The

duration of all the possible fusion pairs from LC kernels

and BE kernels are also predicted. The LC kernels and BE

kernels are not limited to a specified type. We prioritize the

selection of the fused pair that can ensure the QoS of LC

service and maximize the throughput of BE applications at

the same time. If such a fused kernel cannot be found, the

LC kernels and BE kernels are reordered, the same as that in

Baymax [19]. To invoke a fused kernel, the kernel manager

obtains the parameters of the original kernels through shared

memory (Section VII).

Tacker can be used to manage long-running LC services
in private data centers where all the workloads are known,
and Tacker has access to the applications’ codes. This is

similar to those in prior works [18], [19], [43], [53], [58]. To

achieve long-term throughput improvement, it is acceptable to

profile the LC services and BE applications and then statically

fuse kernels. Moreover, kernel fusion can also be done on the

clouds based on an application’s occurrence if the code is

available. If an application’s occurrence exceeds a threshold,

Tacker prepares fused kernels for its kernels. The threshold

is adjustable. Tacker can also be implemented at the cluster

level. For instance, at the cluster level, we can identify the

long-running applications and prepare the fused kernels. The

fused kernels are then distributed to GPUs based on the BE

applications’ location.

V. TENSOR-CUDA CORE KERNEL FUSION

In this section, we describe the direct kernel fusion, its lim-

itations, and present our method to address these limitations.

A. Direct Kernel Fusion

A simple fusion strategy is to fuse the thread blocks of a

CUDA Core kernel (CD kernel for short) and a Tensor Core

kernel (TC kernel for short) into a new block. Figure 5 shows

the general implementation. As shown in the figure, the first

half of threads are responsible for the TC kernel while the

second half are for the CD kernel (step � in Figure 5). The

CD kernel’s threads compute their original thread id using
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the thread step, the TC kernel’s block dimension (step � in

Figure 5). Besides, all threads decide whether they perform

computation based on the block id.

Figure 6 shows an example process of direct kernel fusion.

In the figure, the TC kernel has 2 blocks, each block has 2

warps, and thread id ranges from 0 to 63. The CD kernel has

4 blocks, each block has 4 warps, and thread id ranges from 0

to 127. After kernel fusion, the fused kernel has 4 blocks, each

block has 6 warps, and thread id ranges from 0 to 191. For

each block in the fused kernel, threads 0-63 are responsible

for TC kernel part while threads 64-191 are for CD kernel

part. Since each thread in the block determines its computation

based on its block id and thread id, Thread 64-191 needs to

be converted to thread 0-127 using the thread step. Besides,

each warp in the first two blocks performs computation while

two warps are idle for the last two blocks.

Since the block number and block dimension have changed

after kernel fusion, each thread’s block id and thread id need to

be converted to locate the original computation. In this case,

the direct kernel fusion method requires two kernels’ block

numbers and block dimensions in advance. However, the block

number is determined by the task’s input that is only known

online. If we fuse kernels dynamically in the runtime, we

need to transform source code and generate binary code online

(like JIT in JVM). The process takes almost 900 milliseconds

(Section VIII-I), and introduces serious QoS violations.

The direct kernel fusion method is inappropriate for LC
services that have unstable inputs.

B. PTB-based Kernel Fusion

To eliminate the impact of the block number and block

dimension, we fix the block number of each kernel using

Persistent Thread Block (PTB) technique [26], [42], [48].

PTB’s idea is to treat each issued block as a worker on SM.

With PTB, each persistent block is assigned some tasks that

correspond to the original thread blocks. A persistent thread

block exits while it completes its assigned tasks.

Figure 7 shows the PTB version of a kernel CD kernel
(named by ptb CD kernel). In the figure, issued block num is

the number of persistent blocks on all SMs in ptb CD kernel,

__global__ void CD_kernel(...) { 
int i = blockIdx.x;
...  

}
__global__ void ptb_CD_kernel(...) {

for (int block_pos = blockIdx.x;
block_pos <= original_block_num;

block_pos += issued_block_num) { 
int i = block_pos;
...  

}
}

Fig. 7: The original and PTB versions of a kernel.

LC
 B

lo
ck

s
BE

 B
lo

ck
s

Fig. 8: A fused kernel’s construct example.

and original block num is the number of blocks of the

original kernel CD kernel. Specifically, the thread blocks in

ptb CD kernel perform computation based on block pos that

is calculated from the new blockIdx and issued block num.

We can use the source-to-source compilation to cre-

ate the PTB version of a kernel CD kernel (named by

ptb CD kernel). The compilation idea is to add one for loop

inside the original kernel, and recompute the block id in each

iteration. The original block number becomes a parameter of

the PTB version kernel. In this way, ptb CD kernel has the

fixed block number, though the original version has a dynamic

block number that depends on the inputs. With the fixed block
number, the PTB-based kernels can be fused offline.

C. Flexible Kernel Fusion

The naive PTB-based method fuses two kernels’ blocks

at a 1:1 ratio. However, this ratio is likely to slow down

one component kernel. For instance, to achieve the original

performance, the TC kernel needs 2 persistent blocks per SM,

and each block uses 16KB shared memory; the CD kernel

needs 1 persistent block per SM, and each block uses 32KB

shared memory. When the CD and TC kernels are fused,

a block of the fused kernel uses 48KB shared memory. In

this case, only a single block of the fused kernel could be

issued when an SM only has 64KB shared memory, and the

performance of the TC kernel part drops seriously.
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We therefore enhance the fusion by enabling flexible fusion

ratio. The key idea here is to add enough TC blocks into a

fused block first, for ensuring the performance of TC kernel

part. We prioritize TC blocks because Tensor Cores are more

powerful than CUDA Cores in an SM. Higher throughput

could be achieved with this option. Later, according to the

remaining resources, the CD blocks are added accordingly.

Figure 8 shows an example of fusing two blocks of a TC

kernel and one block of a CD kernel into a fused block. It is

done automatically with Tacker.

Even with the flexible kernel fusion, there is still implicit

memory subsystem contention. It is not always optimal to put

all the CD blocks on the SM. Therefore, we create all possible

fused kernels for two kernels, measure these candidates’

performance and two kernels’ sequential performance, and

choose the best one among them. If the sequential case shows

the best performance, we do not fuse the two kernels.

D. Synchronization and Power

In a fused kernel, heterogeneous warps run in different

branches of a block. While original kernels generally use

syncthreads() to synchronize all threads in a block, Tacker

has to perform explicit synchronization for the warps from

the same branch. This is because invoking syncthreads()
in different branches may lead to dead-lock, performance and

correctness problems in fused kernels.

As shown in Figure 9, we therefore propose an adaptive

thread synchronization interface based on the low-level PTX

code bar.sync [7], a thread-level barrier inside a block. Specif-

ically, we replace the line of syncthreads() in original

code to asm volatile(“bar.sync id, cnt;”), when generating the

fused kernel. The parameter id indicates the barrier id, and

it is allocated to avoid deadlock. The parameter cnt indicates

how many threads need to arrive at the specific barrier before

passing it. It is calculated based on the block dimensions.

In terms of power consumption, the power of a GPU

(2080Ti and V100) already achieves the peak power limit

when the GPU runs a single TC kernel. When the CUDA

Cores and Tensor Cores are active simultaneously, the power

stays at the peak. The power is measured using nvidia-smi.

VI. MODELING FUSED KERNELS

In this section, we propose a model-based performance

prediction approach that can accurately estimate the fused

kernel’s duration. This helps to avoid possible QoS violations.

TC kernel last exits CD kernel last extis

Load_ratio = Xcd / Xtc (%)

The opportune load ratio:
TC warps and CD warps

co-run all the time.

Fig. 10: The duration of a fused kernel with different load

ratios, when the TC component has fixed original time.

A. Analyzing The Duration of Fused Kernel

Tacker does not predict the performance of a fused kernel

based on the counters, as performance counters in GPU are

not available at runtime. Therefore, Tacker does not need to

separate the counters of the CUDA Core and Tensor Core

parts. To construct a model for predicting the duration of

fused kernels, we study the fused kernel’s duration through

extension profiling. Since the fused kernel’s block setup is

static, its duration could only be affected by the computation

size of TC part and CD part. These two parts correspond to

the original time of TC kernel and CD kernel, and we use

Xori tc and Xori cd to represent them. To model the fused

kernel’s duration from two variables, we then define a metric

load ratio in Equation 1 to simplify the process. Based on

that, our profiling experiments could be divided into two parts:

changing load ratio with fixed TC kernel’s original time, and

changing TC kernel’s original time with fixed load ratio.

Load ratio = Xori cd / Xori tc (1)

For the first experiment, we fix the TC kernel’s workload,

i.e., with static Xori tc, and model the fused kernel’s duration

with different workloads of the CD kernel, i.e., a changing

Xori cd. Figure 10 shows the fused kernel’s duration of the

GEMM-fft pair. In the figure, the x-axis is the load ratio; the

y-axis is the duration of the fused kernel that is normalized

to the fixed Xori tc. From the figure, the duration curve fits

a two-stage linear regression model. In particular, there exists

an inflection point before the line exhibits a sharper slope, and

the sharper slope is 1. This means that the duration growth of

the CD kernel is converted to the duration growth of the fused

kernel after the inflection point.

Therefore, we may divide the duration prediction of a fused

kernel into two stages: the co-running of two kernels and the

solo-running of one kernel. There is an opportune load ratio

that the two kernels always co-run and finish at the same time.

For the stage before the inflection point, the solo-run kernel

in the fused kernel becomes the TC kernel. The smaller slope

is decided by the increasing co-running time of two kernels.

For the second experiment, we fix the load ratio, i.e., with

static Load ratio, and model the fused kernel’s duration

with different workloads of the TC kernel, i.e., a changing

Xori tc. We choose several load ratios randomly to show

the experimental results better. Figure 11 shows the duration

curves with different load ratios. Each curve in Figure 11
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Fig. 11: The duration of a fused kernel with fixed load ratios,

when the TC component has different original time.

corresponds to one fixed load ratio. The x-axis is the TC

kernel’s original time, and the y-axis is the fused kernel’s

duration. As shown in the figure, the fused kernel’s duration

has a linear relationship with the TC kernel’s original duration

while the load ratio is fixed.

We have two observations from the above analysis. First,
the fused kernel’s duration shows a two-stage linear regression
model, if the TC kernel’s original duration is fixed. Second,
when the load ratio is fixed, the fused kernel’s duration has a
linear relationship with the TC kernel’s original time.

Therefore, we could predict the fused kernel’s duration in

three steps. 1) we predict the TC kernel and CD kernel’s

original time using LR models, which are Xori tc and Xori cd.

2) we compute the Load ratio based on Equation 1. 3) we

predict the fused kernel’s duration using the two-stage linear

regression model in Figure 10.

B. The Two-stage Linear Regression Model

We infer the two-stage linear regression model through warp

scheduling. For modern GPUs [6], [10], warps are switched

on the SM to hide the computation gap and the switching

strategy is deterministic [5], [17], [38]. When multiple warps

perform computation alternately, warp switching is triggered

by memory access or synchronization.

Figure 12 (a) and (b) show the warp execution timeline

of PTB-based TC kernel and CD kernel, respectively. These

persistent warps process the original warps’ computation in a

loop. With the deterministic warp switching strategy and the

warps’ instruction loop, PTB-based warp execution exhibits

a repetitive pattern. Recent studies have shown that an LR-

(linear regression) based model can precisely predict the

duration of PTB-based kernels (if the kernel demands either

Tensor cores or CUDA cores, but not both) [18], [32], [65].

Though the block of a fused kernel contains both TC warps

and CD warps, they are scheduled with the same strategy. As

shown in Figure 12(c), TC warps and CD warps run at the

same time since they use different computing cores. Due to

memory contention, the execution behaviors of TC warps and

CD warps are different from original execution. Nonetheless,

while both TC warps and CD warps have instruction loops,

the warp execution of the fused kernel still exhibits a repetitive

pattern when they co-run. Therefore, LR is applicable for the
fused kernel when the two component warps co-run.

Tori_tc

computing warp switchingwaitingCD MEM Memory accessTC

(b) 
CD kernel

(c) 
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kernel

warp 1

warp 0

Timeline

(a) 
TC kernel
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Fig. 12: The warp execution timelines of different kernels.

As discussed, the execution of a fused kernel can be divided

into: the co-run of TC warps and CD warps, and the solo-run

of either the remaining TC warps or CD warps. In Equation 2,

Tfuse, Tco run, and Tsolo run indicate the duration of the fused

kernel, the duration of the co-run stage, and the duration of

the solo-run stage, respectively. While both stages could be
predicted using LR, the fused kernel’s duration have a linear
relationship with TC kernel’s original duration if the two
kernels have static load ratio. This corresponds to the second

observation in Section VI-A.

Tfuse = Tco run + Tsolo run (2)

As observed from Equation 2, the load ratio determines the

solo-run warp type and two stages’ duration. While the fused

kernel’s scheduling have two cases: the TC warps solo-run

after co-run and the CD warps solo-run after co-run. These

two cases all could utilize LR to predict the solo-run duration.

Therefore, we could infer that the performance of the fused
kernel can be predicted using a two-stage linear regression
model based on the two component kernels’ load ratio.

Let Load ratioopportune represent the very load ratio point

that divides the two stages in Figure 10. We use Tori cd

and Tori tc to represent the original time of the CUDA Core

part and the Tensor Core part when Load ratioopportune
is achieved, and use Topportune to represent the duration

of the fused kernel in this case. According to Equation 1,

Load ratioopportune = Tori cd/Tori tc.

When scheduling a TC kernel or a CD kernel with dynamic

inputs at runtime, we predict their original duration as Xori tc

and Xori cd, respectively. If the two component kernels’ load

ratio equals to Load ratioopportune, the two kernels co-run

and finish at roughly the same time. Given the duration of

the co-run could be predicted using LR, we can get the

relationship in Equation 3. In this case, Equation 4 predicts

the duration of the fused kernel when the original time of the

two kernels are Xori tc and Xori cd.

Tco run

Topportune

=
Xori tc

Tori tc

=
Xori cd

Tori cd
(3)

Tfuse = Tco run + Tsolo run = Tco run + 0

= Topportune × Xori tc

Tori tc

(4)
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If we fix the TC kernel’s original time and increase the CD

kernel’s original time by Yori cd, the fused kernel changes its

execution from Figure 12(c) to Figure 12(b) after the co-run.

Therefore, the duration of the new computation stage is added

to the duration of the co-run directly. As shown in Equation 5,

the duration of the fused kernel and the load ratio exhibits a

linear relationship over Yori cd. Therefore, Tfuse has a linear

relationship with Load ratio.

Tfuse = Tco run + Tsolo run

= Topportune × Xori tc

Tori tc

+ Yori cd

∝ Yori cd

Load ratio =
Xori cd + Yori cd

Xori tc

∝ Yori cd

Tfuse ∝ Load ratio

(5)

On the contrary, if we reduce the duration of the CD kernel

by Yori cd, we can infer that TC warps must perform some

computation on the GPU alone. The execution changes from

Figure 12(c) to Figure 12(a) after the co-run stage. Assume

Ysolo tc indicates the duration of the solo-run of TC warps.

As shown in Equation 6, the fused kernel’s duration and the

load ratio exhibit a linear relationship with Xori cd − Yori cd.

Therefore, Tfuse has a linear relationship with Load ratio.

Ysolo tc = Xori tc − Xori tc × Xori cd − Yori cd

Xori cd

Tfuse = Tco run + Tsolo run

= Topportune × Xori cd − Yori cd

Xori cd

+ Ysolo tc

∝ (Xori cd − Yori cd)

Load ratio =
Xori cd − Yori cd

Xori tc

∝ (Xori cd − Yori cd)

Tfuse ∝ Load ratio

(6)

To conclude, the performance of the fused kernel can be
predicted using a two-stage linear regression model based on
the two component kernels’ load ratio.

C. Building Duration Models
The fused kernel duration prediction relies on the two

kernels’ load ratio, which requires the original kernels’ du-

ration prediction. We choose LR to predict each GPU kernel’s

duration, and the input is the block number in non-PTB mode,

and the output is the kernel’s duration, as prior researches [18],

[32], [65]. Each GPU kernel needs its own LR model, and this

model characterization only needs to collect a few points. In

this paper, we use historical data to train the LR model, which

introduces ignorant overhead.
As for the available TC-CD kernel pairs, we train the

corresponding prediction models. For a TC-CD pair, we collect

the fused kernel’s duration in four load ratios: 10%, 20%,

180%, 190%, and build the initial duration model, and use

online co-running data to update the model. Whenever the

prediction error of one model exceeds 10%, Tacker updates

the model using online data.
Note that, since a fused kernel runs stable benefited from

the PTB implementation, its duration model does not change

with the kernel’s inputs [32], [65]. Meanwhile, the memory

system contention is already captured, as the samples use the

actual duration of a fused kernel as the baselines.

FUSE1 Q-CD1B-CD1 … Q-CDm Q-TCn

Q-TC1 Q-CD1 Q-CDm Q-TCn…

B-CD2

Q-TC1

FUSE1

+
Query Q

B-CD2 …

BE Task 0

BE Task 1

B-TC1

Timeline

ReorderReorder

Fusion
Kernel of BE

Fused kernel

Queued kernel

Kernel of QB-TC1B-CD1 …

TQ Tqos
Tqueue

…

Fig. 13: The online scheduling an LC query Q with Tacker.

VII. ONLINE KERNEL SCHEDULING

In this section, we describe the mechanism used to schedule

the kernels of LC services and BE applications.

A. End-to-End Latency Breakdown

A query’s duration is the time interval between when the

first kernel is issued and when the last kernel ends. As

shown in Figure 13, Q’s end-to-end latency (TQ) comprises

four parts. They are: (1) the running time of queued kernels

(Tqueue); (2) the running time of the kernels of Q (Tlc), i.e.,

the aggregated time of its TC kernels (Q-TC1, ..., Q-TCn in

Figure 13), and CD kernels (Q-CD1, ..., Q-CDm in Figure 13);

(3) the running time of fused kernels (Tfuse); and (4) the

running time of kernels of BE tasks (Tbe), which could be

selected from the kernels (B-CDi and B-TCj in Figure 13).

B. Scheduling Policy

Tacker uses both kernel fusion and kernel reorder to maxi-

mize the system throughput. Figure 13 presents the end-to-end

scheduling procedure of an LC query Q colocated with BE

applications. Let Tqos represents the QoS target of a query Q,

and TQ represents Q’s end-to-end latency. Q’s QoS is satisfied

only when Equation 7 is satisfied.

TQ = Tqueue + Tlc + Tfuse + Tbe ≤ Tqos (7)

The runtime kernel scheduler of Tacker decides to perform

kernel reorder or fusion for each LC kernel and BE kernel

based on Equation 7 as follows.

1) Calculating QoS Headroom: As discussed above, Tqueue

is known and cannot be reduced when the query Q is launched.

Tacker first predicts the original solo-run duration of Q (de-

noted by Tori solo) for calculating its QoS headroom (denoted

by Thr). Tori solo is known ahead of the execution based on

the prediction models. Thr reveals the free GPU time left for

kernels from BE applications while co-running with Q. When

the first kernel of Q is issued, Thr = Tqos−Tori solo−Tqueue.

Based on Thr, each time a kernel of Q is launched, Tacker

iterates over the ready BE kernels to check whether there are

potential opportunities of kernel fusion and kernel reorder.

Suppose the current kernel of Q is a TC kernel and its

predicted duration is Ttc, and there is a ready CD kernel

from BE applications with duration Tcd. Tacker predicts the

duration of the kernel fused from the two kernels (denoted

by Tk fuse). If Equation 8 is satisfied, Tacker actually fuses

the two kernels and launches the fused kernel. Equation 8

states that the two kernels’ fusion could take advantage of two

computing units’ parallelism, and the fused kernel’s duration
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TABLE II: Experimental specifications.

CPU Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz

GPU NVIDIA RTX 2080Ti (68 SMs, 544 Tensor Cores)

Software CUDA Version: 10.0, CUDNN Version: 7.5

LC Services
Resnet50 (batch size: 32), ResNext (24), VGG16 (24)

VGG19 (16), Inception (32), Densenet (16)

BE mriq, fft, mrif, cutcp, cp, sgemm, lbm, tpacf, Resnet50-T (Res-T),

Apps [49] VGG16-T (VGG-T), Inception-T (Incep-T), Densenet-T (Dense-T)

is within the QoS headroom. More specifically, the kernel

fusion spends Tk fuse−Ttc to complete the CD kernel, which

originally takes Tcd. After the kernel launch, Tacker updates

Thr to be Thr − (Tk fuse − Ttc).

Ttc + Tcd > Tk fuse && Tk fuse − Ttc < Thr (8)

If all the ready BE kernels may not be fused with the

current kernel of Q, Tacker checks whether a BE kernel can

be launched directly. For a BE kernel with prediction duration

Ttmp, if Ttmp is smaller than Thr, it is launched directly and

Thr reduces by Ttmp. Otherwise, the kernel is not launched.

Note that, if multiple BE applications are active, Tacker

fuses the kernels with the highest throughput gain. The

throughput gain can be calculated to be Tgain = Tcd −
(Tk fuse − Ttc). In this equation, Tk fuse − Ttc is the time

for Tacker to finish the CD kernel, which has original time

Tcd. Tacker fuse the kernel of Q with the BE kernel with the

largest Tgain to maximize the system throughput.

2) Multiple active LC queries: It is possible that multiple

LC queries are active. In this case, in order to ensure the

QoS of all the LC queries, we choose to complete the early

queries, and only perform kernel reorder and kernel fusion for

the last arrived query. For instance, if an LC query Qi is still

active when Q arrives, the kernels of Qi must complete the

computation first. Otherwise, the long processing time of Qi

may already result in the QoS violation of Q.

When we calculate the QoS headroom of Q, the GPU time

reserved for Qi’s unexecuted kernels needs to be subtracted.

Therefore, we monitor the remaining GPU time that each

query needs to complete the computation. For a specific

query, such as Qi, we calculate its remaining GPU time by

subtracting the time of its completed kernels from its predicted

overall time (Tlc of Qi).

Suppose there are n active LC queries when Q is launched.

Let Tlc 1, ..., Tlc n represent each query’s remaining GPU

time. Equation 9 calculates Q’s QoS headroom when it is

issued. If the Thr of the new query is close to 0, Tacker directly

launches all the kernels to the GPU.

Thr = Tqos − Tqueue − Tori solo −
n∑

i=1

Tlc i (9)

VIII. EVALUATION

In this section, we describe the implementation of Tacker,

and evaluate it in improving the throughput of BE applications

while ensuring the QoS of LC services.

A. Implementation of Tacker

To evaluate Tacker method, we implement the kernel fuser

and the runtime kernel manager. We implement the kernel

fuser to be a source-to-source compiler. The fuser first converts

all the to-be-fused kernels to PTB mode, collects each kernel’s

per-block resource usage (number of registers and shared

memory size). After that, the kernel fuser profiles each kernel’s

persistent block number, which has the optimal performance.

Lastly, a fused kernel is generated following Section V-C, and

a dynamic-link library is created for online invocation.

We implement the kernel manager based on Caffe [34].

The manager determines to invoke the original kernels or the

fused kernels through the dynamic libraries. We implement

shared memory-based parameter passing to pass parameters

from the original kernels to the fused kernel. Specifically, CD

kernels store their data objects into the shared memory, and the

fused kernel obtains the required data objects from the shared

memory. Besides, for each application, Tacker maintains a

kernel queue that contains the kernel type, ready state, and

scheduling interface of each of its kernels. When a memory-

copy kernel completes, the next kernel is set to be ready.

To implement Tacker method in the python-based frame-

works like TensorFlow, the fused kernels are compiled into

customized operators through custom-op [13]. At runtime,

Tensorflow invokes either the customized or original operators.

B. Experiment Setup

Table II shows the detailed experimental setup. We use six

commonly used DNN models, Resnet50 [29], ResNext [57],

VGG16, VGG19 [47], Inception [51], and Densenet [31], as

LC applications; use eight applications from Parboil [49] and

four DNN training tasks, Resnet50-T, VGG16-T, Inception-T
and Densenet-T (“-T” is used for distinguishing with inference

models) as BE applications. The BE applications are catego-

rized into compute-intensive (mriq, fft, mrif, cutcp, cp) and

memory-intensive (sgemm, lbm, tpacf). DNN training jobs are

also treated as memory-intensive. We use 50ms to be the QoS

target, and LC queries arrive in Poisson distribution [45]. The

batch sizes of the LC services are set based on the QoS target.

The load of each LC service is configured to be 80% of its

peak supported load without causing QoS violation, to emulate

a real datacenter scenario. All the benchmarks in Parboil use
CUDA Cores, and the kernels in training tasks use either
Tensor Cores or CUDA Cores.

The experiments are carried out on a server equipped with

an Nvidia RTX 2080Ti GPU. Tacker does not rely on any

particular hardware features of 2080Ti and is easy to be set up

on other GPUs that integrate Tensor Cores. We also evaluate

Tacker on an Nvidia V100 GPU in Section VIII-F.

C. Improving Throughput

In this subsection, we compare Tacker with Baymax [19], a

system that improves accelerator utilization while guaranteeing

the QoS by reordering kernels. Equation 10 calculates the

throughput improvement [19], [41], [43], [58] of Tacker com-

pared with Baymax. In the equation, TBaymax and TTacker
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Fig. 14: The throughput improvement of BE applications at co-location with Tacker.

Fig. 15: The active timelines of the two types of cores.

represent the processing time of BE applications using Bay-

max and Tacker, respectively. The throughput improvements

only include the results from BE applications as ensuring QoS

is sufficient for LC services [19], [41], [43], [58].

Throughput improvement =
TTacker − TBaymax

TBaymax
(10)

Figure 14 compares the throughput of the BE applications

when adopting Tacker and Baymax. From the figure, Tacker

achieves an average of 18.6% (and up to 41.1%) improvement

over Baymax. Tacker improves the throughput for all 72

(=6×12) co-location pairs because it exploits both adaptive

kernel fusion and kernel reorder, which help to explore not

only the parallelism from two types of computing cores but

also the idle GPU time in the QoS headroom. As a comparison,

Baymax only utilizes the idle GPU cycles with kernel reorder.

We also observe that Tacker achieves higher throughput

improvements for compute-intensive BE applications. This is

because memory-intensive applications require more memory

resources and their co-runs face more resource contention,

leading to lower throughput improvements.

Figure 15 presents the execution traces of LC application

Resnet50 and two BE applications (sgemm and fft) with Tacker,

which help to clarify the reason why Tacker performs better

than Baymax. In the figure, the two rows represent the active

time of the CUDA core and Tensor cores, respectively. We use

blue bars to represent the co-run with Tacker.

From Figure 15, Tacker successfully exploits the parallelism

from the two types of cores. By comparing the timelines for

Resnet50+sgemm and Resnet50+fft, we find that the total time

of both types of cores being active from Resnet50+fft is longer

than that from Resnet50+sgemm. Given the BE applications in

both pairs are compute-intensive, the longer time the two types

of cores stay active, the more parallelism Tacker explores, and

thus the higher throughput the fused kernel can achieve.

Fig. 16: The average and 99%-ile latencies of the LC services

in all the 72 co-location pairs with Tacker.

We then evaluate the efficiency of Tacker by analyzing its

improvement upper bound on throughput. For simplicity, we

assume the query only has a single TC kernel and a single CD

kernel. The throughput improvement is maximized when the

BE application has an opportune CD kernel and an opportune

TC kernel. Let Tlc represent the duration of TC kernel in an

query, and Tbe represent the duration of CD kernel in the

BE application. Let Tfuse represents the duration of the fused

kernel, and Thr represents the QoS headroom. Based on that,

the squeezed time with kernel fusion that can be used to run

BE kernels is Tsqueezed tc = Tbe − (Tfuse − Tbe). As for

CD kernel part, the squeezed time for CD kernel part could

also be calculated in the same way as Tsqueezed cd. Besides,

both Tacker and Baymax are able to run BE kernels in the

QoS headroom period Thr through kernel reorder. The time

upper bounds of Tacker and Baymax that can be used to

run BE kernels are Tsqueezed tc + Tsqueezed cd + Thr, and

Thr respectively. The throughput improvement of Tacker over

Baymax is (Tsqueezed tc + Tsqueezed cd)/Thr.

For instance, the optimal throughput improvement of Tacker

in Resnet50+sgemm and Resnet50+fft are 11% and 66%, re-

spectively. In our experiment, Tacker improves the throughput

by 5.5% and 32.9%. This is because we only use 55.4% of the

TC kernels for fusion. Since the TC kernels in CuDNN [20]

is black-boxed, we use an open-source Nvidia implementa-

tion [4], [11] with the similar performance to replace the TC

kernels in CuDNN. In addition, the opportune load ratio may

not always be achieved due to the random inputs of BE tasks.

Higher improvement could be achieved if we can use the

CuDNN implementation.

When the batch size of the LC application is smaller,

the co-located BE application gets higher throughput. The

experimental results show that the BE application has a further
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Fig. 17: The duration prediction errors of the PTB kernels.

Fig. 18: The duration prediction errors of the fused kernels.

17.4% throughput improvement when the batch size of the

LC application is 1. Meanwhile, the throughput gain from the

kernel fusion technique is smaller, because the LC applica-

tion’s duration determines the fusion potential. The throughput

of the benchmarks with Tacker is 5.5% more compared with

Baymax, when the batch size is 1.

D. Guaranteeing QoS

Figure 16 presents the 99%-ile and average latencies of the

LC applications in the 72 co-location pairs. As shown in the

figure, Tacker ensures the QoS for LC applications under all

the co-locations. This is because Tacker determines whether to

perform kernel fusion based on the queries’ QoS headroom in

real-time. If there is a possible QoS violation, Tacker launches

the kernels of the LC application directly.

Moreover, LC applications in all the co-locations achieve

similar average latency, because the queries arrive in the same

distribution. The same arrival distribution and scheduling strat-

egy bring similar average latency. Besides, LC applications

have similar 99%-ile latencies in all the co-locations. This is

because the QoS targets of the LC applications are all 50ms in

our experiment. Tacker effectively uses the QoS headroom in

all the co-locations to run the BE kernels, the 99%-ile latencies

of the LC applications are close to the QoS target.

E. Accuracy of The Duration Predictor

In this subsection, we evaluate the duration prediction

accuracy for fused kernels. As presented in Section VI-A,

Tacker first predicts the duration of each kernel before fusing,

and then predicts the duration of the fused kernel based on

the predicted duration of the to-be-fused kernels.

In this experiment, we first investigate the prediction accu-

racy of the linear regression models on a single PTB kernel.

These LR models accept the basic runtime configuration

(input parameters) of kernels and predict their running time.

Figure 17 shows the prediction error of these single kernels

prediction error. Besides the kernels from Parboil, we choose

four representative kernels from DNN training tasks, which

are ReLU, Scale, BN, and Pooling. The predicted running time
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Fig. 19: Throughput improvement on an Nvidia V100.

differs from the actual value by at most 3%, and the average

prediction error is less than 2%. Therefore, Tacker is able to

use linear regression to predict the duration of PTB kernels.

We also evaluate the two-stage LR model’s prediction

accuracy for the fused kernels. As discussed in Section VI-B,

the duration prediction is based upon two kernels’ load ratio.

We fit these two stages (denoted as “Before Inflection” and

“After Inflection”) separately with two LR models. Figure 18

shows the prediction accuracy for these two stages. These LR

models achieve an error rate lower than 8%.

The two-stage LR modeling technique is accurate for pre-
dicting the duration of fused kernels.

F. Adapting to Other GPU Generations

Besides 2080Ti, Figure 19 shows the throughput improve-

ment of BE applications with Tacker on a V100 GPU [9]. Re-

sults of three LC services are shown due to the tight space. As

observed, Tacker increases the throughput of BE applications

by 23.3% on average (up to 40.4%). By comparing Figure 19

and Figure 14, Tacker improves the throughput of memory-

intensive BE applications more on V100 than on 2080Ti. This

is because V100 has larger shared memory in each SM (96KB)

than 2080Ti (64KB). In this case, there are higher possibilities

for memory-intensive BE kernels to co-run with TC kernels.

We need to update the prediction models to deploy Tacker

on other GPUs, as kernels show different performance on

different GPUs. No other update is required.

G. Comparing with Co-running Interfaces

MPS [1] and CUDA Stream [2] cannot use the two units

simultaneously. We find that they can partially achieve the

purpose by implementing extra synchronization between co-

running kernels and integrating with the PTB techniques. In

this experiment, we compare the kernel fusion technique in

Tacker with MPS+PTB, and Stream+PTB. Specifically, we

use two Nvidia GEMM [11], [12] implementation as the TC

kernel, co-run it with the CD kernels in the BE applications.

Equation 11 defines the metric, overlap rate, to evalu-

ate the achieved performance with Tacker, MPS+PTB, and

Stream+PTB. We have tuned the solo-run time of the TC

kernel and the CD kernels to be the same to show the highest

overlap rate. In the equation, TTC kernel, TCD kernel, and

Tcorun are the solo-run time of the TC kernel, solo-run time

of the CD kernel, and the co-running time of the two kernels,

810

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 13,2023 at 08:55:27 UTC from IEEE Xplore.  Restrictions apply. 



50

40

30

20

10

0

O
ve

rla
p 

R
at

e(
%

)

mriq1 fft1 mrif1 cutcp1 cp1
sgemm1lbm1

stencil1tpacf1
regtil1 mriq2 fft2 mrif2 cutcp2 cp2

sgemm2lbm2
stencil2tpacf2

regtil2

 Stream+PTB
 MPS+PTB
 Stacker

Fig. 20: Comparison with other co-running interfaces.

Fig. 21: Normalized performance of im2col+GEMM method

over cuDNN convolution kernel.

respectively. The overlap rate ranges from 0 to 50%, the larger

the better.

Overlap Rate =
TTC kernel + TCD kernel − Tcorun

TTC kernel + TCD kernel

(11)

Figure 20 shows the overlap rates of all the kernel co-run

pairs. The label of x-axis represents BE applications co-located

with different GEMM kernel. The kernel fusion technique in

Tacker brings the highest overlap rate in all the co-run cases.

This is because Tacker guarantees that two kernels can run

on an SM at the same time. For MPS and Stream, since their

scheduling logic is black-boxed, it is difficult to know how

they schedule the kernels that use the two types of hardware.

The overlap performance of MPS is pretty poor in many cases,

and Stream’s performance on several cases is also unsatisfying,

which is the colocation with tpacf , cutcp, and stencil. Even

though they achieve similar overlap rates with Tacker in some

cases, they are not suitable to be used for runtime scheduling

due to the unstable performance.

H. Comparing with cuDNN Implementation

DL frameworks generally rely on cuDNN to provide

high performance, and the implementation of cuDNN ker-

nels is black-box. While kernel fusion needs the kernel’s

source code, we convert the cuDNN convolution kernel

cudnnConvolutionForward() to cudnnIm2col() kernel

and GEMM kernel [4], [11]. Figure 21 shows the normal-

ized performance of cudnnIm2col() + GEMM implementa-

tion over cudnnConvolutionForward() implementation in

Resnet50. As shown, the performance gap between the two

implementations is less than 15% for 39.6% of the convolution

kernels. By only transform the kernels with low performance

gap, the entire application has less than 2% performance loss

after the transformation. Specifically, 36.5% of convolution

kernels in two VGG models and 55.4% of convolution kernels

in the other four models are transformed to cudnnIm2col()
kernel and GEMM kernel.

volta_h884cudnn_256x64_ldg8_relu_exp_medium_nhwc_tn_v1

Architecture, 
e.g., volta, truing

884 or 1688 indicate 
using Tensor Core

Input shape related 
Information

Fig. 22: The definition of convolution implementation names

TABLE III: The resource usage of cuDNN kernels.

CONV TYPE T1 T2 T3 T4 T5 T6

Register (%) 69.5 79.3 79.3 67.2 82.8 73.4

Shared memory (%) 64.0 100 64.0 64.0 100 76.8

Max DRAM bandwidth (%) 32.5 64.1 42.8 70.3 50.2 41.9

FP32 utilization (%) 0 0.31 0 0.19 0 0

CONV TYPE T7 V1 V2 V3 V4 V5

Register (%) 76.9 88.6 88.6 88.6 88.6 88.6

Shared memory (%) 76.8 86.4 51.2 86.4 86.4 51.2

Max DRAM bandwidth (%) 32.2 53.4 63.9 59.1 38.5 30.2

FP32 utilization (%) 0 0 0 0.25 0 0

For the 53 convolution kernels in Resnet50, there are 7

internal implementations on 2080Ti and 5 internal implemen-

tations on V100 in cuDNN. Figure 22 presents the name of

an example implementation and its definition rules. Table III

shows the resource usage of the 12 cuDNN implementations.

In the table, T1 to T7 and V 1 to V 5 are the implementa-

tions used on 2080Ti and V100 respectively. As observed, 6

implementations on 2080Ti have register usage below 80%,

and 2 implementations on V100 have shared memory usage

as 51.2%. All the implementations have the DRAM bandwidth

usage lower than 71%, and do not use FP32 cores. Therefore,
there are unused resources in the cuDNN implementations,
even though they are highly-optimized.

I. Overhead

Tacker brings slight offline overhead and online overhead.

As for the online scheduling overhead, Tacker only considers

fusing the first kernel in each application’s kernel queue each

time. Suppose 10 LC services and 50 BE applications co-run

on a GPU. Since Tacker only schedules one kernel at a time,

Tacker only considers 50 kernel pairs for fusion. The operation

takes 1.2 milliseconds. In the same case, we also measure

the overhead of the static scheduling by forcing Tacker not

to fuse the kernels. The overhead of the static scheduling is

0.5 milliseconds on average. Therefore, the online scheduling

overhead of Tacker is acceptable.

Tacker’s offline overhead comes from the kernel fusion

process and the model training process. For a BE task in

Parboil, compiling a fused kernel and generating the shared

library takes 0.9 seconds, and the size of the shared library

is 62KB on average. Besides, we also create a shared library

for 10 DNN operators to support DNN training tasks. The

operation completes in 0.7 seconds, and the size of the library

is 463KB. While there are tens of operators for mainstream

DL frameworks, Tacker only needs a few megabytes. In terms

of training duration models, training the duration model for a

fused kernel completes in 20 milliseconds.

The overhead of kernel fusion is determined by the fuse

operation itself and the frequency of the fusion. While the fuse

operation is intrinsic, we reduce the frequency of performing
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the fusion in two methods. First, if the aggregated per-block

resource usage of two kernels exceeds the resource’s capacity

in an SM, Tacker does not perform kernel fusion. Second, if

a CD kernel could not benefit from kernel fusion with one

TC kernel, this CD kernel would not be considered for fusion.

This is because all the TC kernels are GEMM-related, and

they have similar resource usage.

IX. CONCLUSION

Tacker uses kernel fusion to maximize the throughput of BE

applications while ensuring the required QoS of LC services.

It is comprised of a Tensor-CUDA core kernel fuser, a duration

predictor, and a runtime kernel manager. The kernel fuser

enables the adaptive fusion of kernels that use the Tensor cores

and CUDA cores. The duration predictor precisely predicts the

duration of the fused kernels. The kernel manager determines

whether to perform the kernel fusion. Tacker improves the

throughput of BE applications by 18.6% on average (up to

41.1%), while ensuring the required QoS target.
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